Категории
Самые читаемые
Лучшие книги » Домоводство, Дом и семья » Здоровье » Большая энциклопедия диабетика - Хавра Астамирова

Большая энциклопедия диабетика - Хавра Астамирова

Читать онлайн Большая энциклопедия диабетика - Хавра Астамирова

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 86 87 88 89 90 91 92 93 94 ... 109
Перейти на страницу:

Корр.: Позвольте поблагодарить вас, Михаил Сергеевич, за интересное интервью. Что бы вы хотели пожелать в заключении нашим читателям? Ахманов: Был такой американский писатель-фантаст Роберт Хайнлайн; прожил он долгую жизнь, удостоился признания, писал хорошие книги, а диабетом, насколько я знаю, не болел — в отличие от Фридриха Дюрренматта, Хемингуэя и Жюля Верна. Но был Хайнлайн еще философом и просто умным человеком и говорил он так: «Если ты не любишь себя самого, другим ты тоже не понравишься». И еще говорил: «Любая свобода стоит того, что за нее заплачено». И еще: «Живи и учись… Иначе долго не протянешь».

Эти его изречения я бы советовал хорошо запомнить больным диабетом — всем больным, и молодым, и старым.

Часть 6

Перспективы и надежды

Глава 23

Теория и практика компенсации диабета с использованием программноматематических средств

1. Математическая модель компенсации диабета

Эта глава адресована читателям, которые владеют необходимым математическим аппаратом, чтобы разобраться с изложенными в ней соображениями. Хотя мы напишем не слишком много формул, однако будем комментировать процесс компенсации диабета на математическом языке, дабы знающие и понимающие его могли лучше уяснить ситуацию.

Итак, в качестве эталона мы имеем здоровую поджелудочную железу — систему, автоматически и с высокой точностью реагирующую на концентрацию глюкозы в крови и секретирующую необходимое количество инсулина. Соответствующую кривую естественной суточной секреции инсулина обозначим F=F(t), где t — время, а F — содержание инсулина в крови. Пример функции F(t) дан на рисунке 8.2, график 1. Конкретный вид этой кривой зависит от двух факторов, изменяющих сахар крови: от физической нагрузки и поступления в организм углеводов (их количества, времени их поступления и скорости всасывания). F(t) — эталонная функция, характеризующая здоровую поджелудочную железу.

Рассмотрим случай диабета I типа, когда естественная секреция инсулина отсутствует, и отбросим вначале факторы физической нагрузки и неоднозначности действия внешнего инсулина. Примем также некую идеальную модель питания, когда человек, не испытывающий физических нагрузок (кроме самых необходимых и минимальных), ест в строго определенное время четыре или пять раз в сутки и за каждый прием пищи поглощает строго определенное количество углеводов. В этих идеализированных условиях мы имеем единственную переменную величину: набор искусственных инсулинов, каждый из которых характеризуется определенными функциями действия f(t0, t), где t0 — параметр, определяющий время введения инсулина, а t — текущее время. Примеры этих функций представлены на рисунке 8.2, на графиках 2–8, при t0=0. Набор данных функций, который мы обозначим Ф, конечен, но их имеется не пятьдесят разных видов, а гораздо больше: напомним еще раз, что с точки зрения математики функции для одного и того же инсулина, введенного в разное время, подобны, но сдвинуты по оси времени (то есть с формальной точки зрения это разные функции). Сколько же их? Если считать, что инъекции инсулина разрешены только в дневные часы и могут делаться в любой из временных точек с 8 утра до 23 вечера со скважностью один час, то каждая из приведенных на рисунке 8.2 функций (при t=0, что соответствует 8 утра) порождает еще пятнадцать, сдвинутых по оси t на один, два и так далее часа. Эта дискретизация, разумеется, условна, но позволяет оценить общее количество функций базиса — в данном случае их порядка восьмисот. Чтобы окончательно формализовать обозначение базисных функций, вынесем зависимость от параметра t0 из скобок и запишем Ф = { fj(t) }.

Наша задача: с помощью двух — семи функций из набора Ф аппроксимировать эталонную функцию F(t): где Сj — вес функции fj или, иными словами, j-я доза соответствующего инсулина Напомним, что проблема аппроксимации некой реальной функциональной зависимости с помощью набора базисных функций (обычно заданных математически) является широко распространенной задачей, возникающей в науке и технике. Она решается с помощью метода наименьших квадратов (МНК), с помощью которого можно определить весовые коэффициенты С. Стандартные базисы, которые используются в этом случае — степенной ряд и ряд Фурье — позволяют минимизировать отклонение между левой и правой частями написанного выше выражения и добиться того, что эталонная функция F(t) с высокой точностью представляется с помощью суммы базисных функций, умноженных на весовые коэффициенты. Но высокая точность достигается путем суммирования большого количества членов, то есть разложения F(t) с использованием большого количества базисных функций. В нашем случае это невозможно, так как нельзя делать десятки инъекций инсулина в день.

Итак, если в разложение для F(t) включены две функции, то этот случай соответствует инсулинотерапии с двумя инъекциями пролонгированного инсулина утром и вечером; если включены семь функций, то этот случай соответствует базис-болюсной терапии, когда утром и вечером делаются инъекции смешанным инсулином и в течение дня совершаются еще три подколки «коротким» инсулином. Формально, как уже отмечалось, задача сводится к определению коэффициентов Сj с помощью метода наименьших квадратов и может быть легко решена.

Однако насколько хорошим будет такое решение? Мы могли бы вычислить отклонение между эталонной функцией и аппроксимирующей ее, но в этом нет необходимости: мы сразу можем сказать, что в случае базис-болюсной терапии качество будет вполне приемлемым, а при двух инъекциях пролонгированного инсулина — более низким. Данный вывод следует из вида функций нашего базиса и вида F(t): эталонная функция содержит резкие пики и области плавного «фона», и ее никак нельзя удовлетворительно аппроксимировать парой функций с широкими горбами (см. рис. 8.2, график 3).

Получается, что базис-болюсная терапия — наилучший из выходов? Очень сомнительно! Напомним, что мы рассматривали задачу аппроксимации в идеализированных условиях, а теперь нужно ввести реальные параметры: неоднозначность действия инсулина (зависимость от точки инъекции, температуры и прочих неясных обстоятельств); неизбежные ошибки в питании (ошибки в математическом смысле — то есть разброс количества поглощенных углеводов и скоростей их всасывания); физические нагрузки, влияние которых невозможно учесть с достаточной точностью. Три указанных фактора в каждый момент времени являются величинами неопределенными, но к тому же они действуют одновременно, и влияние их суперпозиции — это, образно говоря, неопределенность в квадрате.

Мы можем учесть их только эмпирически — и, разумеется, довольно грубо.

Итак, каковы же выводы? 1. Мы в принципе не можем добиться стопроцентной компенсации диабета «ручным способом», поскольку эта задача сводится к попытке аппроксимации естественной (но уже не эталонной!) функции F(t), которая строго не определена и зависит от параметров, которые нам в точности неизвестны — питания и физической нагрузки. Функции базиса, с помощью которых мы пытаемся приблизиться к F(t), тоже «плывут», они тоже строго не определены (неоднозначность действия внешнего инсулина). К тому же, по условиям задачи, мы не можем использовать много базисных функций — ведь каждый член в приведенном выше разложении означает укол шприцом.

2. В виду неясности ситуации, описанной в предыдущем пункте, мы не можем качественно промоделировать своими силами, с помощью инсулина, диеты и режима, тонкий механизм функционирования поджелудочной железы. Условно говоря, там, где нужен компьютер, мы крутим рукоять старинного арифмометра.

3. Но арифмометр тоже способен давать результаты — пусть не с такой скоростью и не с такой точностью, как современный компьютер. Мы не можем добиться идеальной компенсации диабета, но мы способны приблизиться к ней — не предельно близко, но все же на такое расстояние, когда риск из-за ошибок аппроксимации минимален — при существующем уровне медицины. Совершенно очевидно, что ошибки аппроксимации будут тем меньше, чем меньше влияние неопределенных и неучтенных факторов, которыми мы в какой-то степени способны управлять, — питания и физических нагрузок. Если хотите, считайте данный вывод математическим обоснованием необходимости диеты, режима и всех процедур контороля заболевания.

Сейчас дела обстоят именно так, но это не означает, что песня закончилась минорной нотой.

2. Программные средства для компенсации диабета

В последние годы имеет место ряд попыток компенсации диабета с помощью программ, рассчитывающих дозу инсулина, необходимую для погашения определенного количества пищи. Такие программы созданы за рубежом, но мы рассмотрим отечественный вариант — если понимать под Отечеством нашу страну в недавнем прошлом. Эта оговорка необходима, так как Юрий Петрович Кадомский, автор программы «Диабет 2000», живет в Риге. Ему немногим более пятидесяти лет, он офицер в отставке, инженер; кроме того, он опытный диабетик, что позволило ему создать разумный алгоритм подсчета компенсационных доз инсулина.

1 ... 86 87 88 89 90 91 92 93 94 ... 109
Перейти на страницу:
На этой странице вы можете бесплатно скачать Большая энциклопедия диабетика - Хавра Астамирова торрент бесплатно.
Комментарии