- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Теория статистики: конспект лекций - Инесса Бурханова
Шрифт:
Интервал:
Закладка:
Простой называется группировка, если группа образована только по одному признаку. Если разбить группу на подгруппу в соответствии с определенными признаками, то такую группировку называют комбинированной.
Комбинационной считается группировка, когда разбивка совокупности на группы производится по двум и более группировоч–ным признакам, взятым в сочетании (комбинации) друг с другом Комбинационные группировки позволяют изучать единицы совокупности одновременно по нескольким признакам.
При изучении сложных социально–экономических явлений и процессов применяются комбинационные группировки. Для того чтобы построить комбинационную группировку, необходимо выявить наличие достаточно большого числа наблюдений.
Для того чтобы найти скопление (в мерном пространстве) объектов (точек), необходимо применить многомерную группировку Различают группировки по используемой информации:
1) первичные – производятся на основе исходных данных которые были получены в результате статистического наблюдения;
2) вторичные – это результат соединения или расчленения группировки.
3. Принципы построения группировок
Для построения статистических группировок нужно выбрать группировочный признак, далее определить количество групп, на которые разбивают изучаемую статистическую совокупность и зафиксировать границы интервалов группировки. Для каждой группировки нужно находить конкретные показатели или их систему, которые должны охарактеризовать изучаемые группы.
Выбор группировочного признака – сложный вопрос в теории статистической группировки и статистического исследования в целом. Группировочный признак – это основание, по которому проводится разбивка единиц совокупности на отдельные группы. От степени точности группировочного признака зависит правильность выводов статистического исследования.
В группировку входят количественные и атрибутивные (качественные) признаки. Количественные признаки обычно имеют числовое выражение (например, объем выпускаемой продукции, возраст человека, доход семьи и т. д.). Атрибутивные признаки дают качественную характеристику единицы совокупности (например, пол, семейное положение, политическая ориентация человека и т. д.). Выделенные группы по атрибутивному признаку в группировке должны отличаться друг от друга по качественной характеристике признака. Число групп, на которые расчленяется статистическая совокупность, зависит от количества градаций атрибутивного признака.
Важно изучить экономическую сущность исследуемого явления при построении группировки по количественному признаку.
Для определения числа групп можно воспользоваться формулой Стерджесса:
h + 3,322 × lg N,
где h – число групп;
N – число единиц совокупности;
lgN – десятичный логарифм от N.
Данная формула говорит о том, что выбор числа групп объектно зависит от объема совокупности. После установления числа групп решается вопрос об определении интервалов группировки.
На основе интервала группировки можно количественно различить одни группы от других и наметить границы выделения их нового качества. Интервал группировки – это интервал значений варьирующего признака, лежащих в пределах определенной группы. Каждый интервал имеет свою длину (ширину), верхнюю и нижнюю границы.
Нижняя граница интервала – это наименьшее значение признака в интервале, а верхняя граница интервала – его наибольшее значение. За нижнюю границу первого интервала принимают наименьшее значение признака в совокупности единиц наблюдения. Верхняя граница последнего интервала не может быть меньше наибольшего значения признака в совокупности единиц наблюдения.
Ширина интервала – это разность между верхней и нижней границами. Интервалы группировки в зависимости от их ширины бывают равными и неравными. Неравные делятся на прогрессивно возрастающие, прогрессивно убывающие, произвольные и специализированные. Если вариация признака проявляется в сравнительно узких границах и распределение носит равномерный характер, то строят группировку с равными интервалами.
Величина равного интервала определяется по следующей формуле:
h = R/n = ( х мах – х min ) / n,
гдех мах ,х min – максимальное и минимальное значение признака в совокупности;
n – число групп.
Данную формулу называют шагом интервала. Если размах вариации признака в совокупности велик и значения признака варьируются неравномерно, то используют группировку с неравными интервалами. Неравные интервалы могут быть получены, если построенная группировка с равными интервалами содержит группы, не отражающие определенные типы изучаемого явления или процесса или не содержащие ни одной единицы совокупности, возникает необходимость увеличения – объединения двух или нескольких малочисленных или «пустых» последовательных равных интервалов. Выбор равных или неравных интервалов зависит от степени заполнения интервалов. Интервалы группировок могут быть закрытыми и открытыми Закрытыми интервалами являются интервалы, в которых указаны верхняя и нижняя границы. Открытые интервалы имеют только одну границу (верхнюю – у первого, нижнюю – у последнего). К количественным признакам можно отнести непрерывный признак, или дискретный. Если в основании группировки лежит дискретный признак, то нижняя граница i – го интервала равна верхней границе i – го интервала, увеличенной на 1.
В группировках, отражающих качественные особенности и специфику выделяемых групп единиц изучаемой совокупности по определенному признаку, применяются специализированные интервалы. Специализированные интервалы – это интервалы, которые применяются для выделения из совокупности одних и тех же типов по одному и тому же признаку у явлений, находящихся в различных условиях. По роли, которую играют признаки во взаимосвязи изучаемых объектов, процессов или явлений, их можно подразделить на факторные и результативные. Факторные признаки воздействуют на другие признаки, а результативные испытывают на себе влияние других признаков.
ЛЕКЦИЯ № 4. Статистические ряды распределения и статистические таблицы
1. Статистические ряды распределения
В результате обработки и систематизации первичных данных статистического наблюдения получают группировки, называемые рядами распределения.
Статистические ряды распределения представляют собой упорядоченное расположение единиц изучаемой совокупности на группы по группировочному признаку.

