Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Прочая научная литература » Расширенный фенотип: Дальнее влияние гена - Ричард Докинз

Расширенный фенотип: Дальнее влияние гена - Ричард Докинз

Читать онлайн Расширенный фенотип: Дальнее влияние гена - Ричард Докинз

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 85 86 87 88 89 90 91 92 93 ... 102
Перейти на страницу:

Я благодарен доктору Дж. П. Хелману, не скрывшему от меня саркастическую реакцию коллег на статью, которая была краткой проверочной версией этой книги (Докинз 1978): «Ричард Докинз переоткрыл организм». Ирония мне понятна, но там всё не так просто. Мы не возражаем, что есть что-то особенное в индивидуальном организме как в уровне иерархии жизни, но это не есть нечто очевидное, что можно принять без вопросов. Я надеюсь, что эта книга наглядно показала наличие второй стороны куба Неккера. Но куб Неккер имеет привычку перещёлкиваться назад к его первоначальной ориентации, и затем чередовать ориентации. Да, есть что-то особенное в индивидуальном организме как единице жизни, и мы должны увидеть это яснее, рассмотрев другую сторону куба Неккера, и приучив свои глаза видеть сквозь стены тел мир репликаторов и их расширенные фенотипы.

Так что же есть особенного в индивидуальном организме? Учитывая, что жизнь следует рассматривать как состоящую из репликаторов с их расширенными фенотипическими инструментами выживания, почему на практике репликаторы захотели группировать себя – сотнями тысяч! в клетках, и почему они повлияли на эти клетки так, чтобы те клонировали себя миллионами и миллиардами в организмах?

Один ответ предложен логикой сложных систем. Саймон (1962) написал стимулирующее эссе об «архитектуре сложности», которое предлагает (используя ставшую известной притчу о двух часовщиках – Темпусе и Хоре), общую функциональную причину того, почему сложная организация любого вида, биологическая или искусственная, стремится организовываться во вложенные иерархии повторяющихся субъединиц. Я развил его аргументацию в этологическом контексте, делая вывод, что эволюция статистически «невероятных ансамблей проходит быстрее, если существует последовательность промежуточных устойчивых субансамблей. Так как аргументация применима на уровне каждого субансамбля, то значит, что существующие в мире высокосложные системы вероятно должны иметь иерархическую архитектуру». (Докинз 1976b). В нашем контексте иерархия состоит из генов в клетках, и клеток в организмах. Маргулис (1981) убедительно указывает на красивый вариант старой идеи, говоря, что иерархия включает промежуточный уровень – сами эукариотические «клетки» в некотором смысле – многоклеточные группы, симбиотические союзы объектов, таких как митохондрии, пластиды и реснички, которые произошли от, и являются гомологами прокариотических клеток. Я не буду здесь развивать этот вопрос. Идея Саймона очень обобщённая, нам нужен более определённый ответ на вопрос о том, почему репликаторы захотели организовывать свои фенотипы в функциональные единицы, особенно на двух уровнях – клетки и многоклеточного организма.

Чтобы задавать вопросы о том, почему мир является таким, таков он есть, мы должны представить себе, каким он мог бы быть. Нужно изобрести возможные миры, в которых жизнь могла бы быть организована по-другому, и спросить, что бы в них могло происходить. Тогда какие поучительные альтернативы построения жизни мы можем вообразить? Прежде всего – чтобы понять почему реплицирующиеся молекулы собраны в клетках, мы вообразим мир, в котором реплицирующиеся молекулы плавают свободно в море. Существуют различные вариации репликаторов, они конкурируют друг с другом за место и химические ресурсы, необходимые для построения своих копий, но они не сгруппированы вместе в хромосомах или ядрах. Каждый отдельный репликатор проявляет фенотипическую власть, производя копии самого себя, и отбор одобряет тех из них, которые обладают наиболее эффективной фенотипической силой. Легко поверить, что эта форма жизни была бы эволюционно неустойчива. Всё было бы захвачено мутантными репликаторами, которые «объединяются в бригады». Некоторые репликаторы имели бы химические эффекты, дополняющие таковые других репликаторов – дополняющие в том смысле, что когда два их химических эффекта объединены, репликация обоих облегчается (см. модель-2 в предыдущей главе). Я уже приводил пример генов, кодирующих ферменты, катализирующих последовательные стадии биохимической реакции. Тот же принцип может применяться к большим группам взаимодополнительных реплицирующихся молекул. Действительно, реальная биохимия предполагает, что минимальная единица репликации, может быть кроме как у полного паразита, погружённого в питательную среду, составляет приблизительно пятьдесят цистронов (Margulis 1981). Здесь нет никакого различия в том, возникают ли новые гены дублированием старых и остаются рядом, или сходятся вместе ранее независимые гены. Мы можем далее обсудить эволюционную стабильность состояния «пребывания в бригаде».

«Комплектование» генов в клетки тогда понять легко, но почему клетки «собираются» вместе в многоклеточные клоны? В этом случае нам не требуется изобретать мысленных экспериментов, потому что и одноклеточные, и бесклеточные организмы изобилуют на нашем мире. Они однако все очень малы, и может быть было бы полезно вообразить возможный мир, в котором существуют большие и сложные одноклеточные или одноядерные организмы. Может ли существовать такая форма жизни, в которой единственный набор генов, возведённых на престол в единственном центральном ядре, управлял бы биохимией макроскопического тела со сложными органами; ну может не единственная гигантская «клетка», а многоклеточное тело, в котором все клетки кроме одной, были бы лишены их собственных частных копий генома? Я думаю, что такая форма жизни могла бы существовать лишь в том случае, если бы её эмбриогенез следовал бы принципам, очень отличным от тех, с которыми мы знакомы. Во всех известных нам случаях эмбриогенеза, в любом типе дифференцирующейся ткани, в любой момент «включена» незначительная часть генов (Gurdon 1974). Это был бы по общему признанию слабый аргумент на этом поприще, но если бы существовал только один набор генов во всём теле, было бы сложно понять, как соответствующие продукты гена могли быть передаться в различные части дифференцирующегося тела с должной скоростью.

Но зачем нужен полный набор генов в каждой клетке развивающегося тела? Легко представить себе такую форму жизни, в которой в ходе дифференцирования части генома отделяются так, чтобы данный тип ткани (скажем – ткани печени или почек), имел бы только те гены, которые ей требуются. И только клетки зародышевой линии выглядят действительно нуждающимися в хранении полного генома. Причиной этого может быть просто отсутствие лёгкого способа физически отделять части генома. В конце концов – гены, необходимые в какой-то конкретной дифференцированной зоне развивающегося тела, вовсе не сосредоточены на одной хромосоме. Предполагаю, мы теперь можем задать вопрос, почему это именно так. Учитывая фактическое положение дел, можно полагать полное разделение всего генома при каждом делении клетки просто самым лёгким и экономичным способом ведения таких дел. Однако, в свете моей притчи (глава 9) о марсианине в розовых очках, и потребности в цинизме, читатель может захотеть поразмышлять далее. Может быть так, что дублирование полного (а не частичного) генома в митозе является адаптацией некоторых генов, направленной на сохранение возможности обнаруживать и пресекать деятельность потенциальных мошенников среди их коллег? Лично я сомневаюсь в этом, но не потому что идея в корне притянута за уши, а потому что с трудом представляю, как ген, скажем – в печени может мошеннически извлекать выгоду, управляя печенью так, чтобы это наносило ущерб генам в почке или селезёнке. Из логики главы про паразитов следует, что интересы «генов печени» и «генов почек» накладываются, потому что они разделяют одну и ту же зародышевую линию, и один и тот же гаметный путь выхода из данного тела.

Я не привёл строгого определения организма. Вопрос этот очень спорен, ибо организм – концепция столь сомнительной полезности, что его трудно определить удовлетворительно. С иммунологической или генетической точек зрения пара монозиготных близнецов должна бы считаться одним организмом, которые с очевидностью им не являются с точки зрения физиолога, этолога, или критерия неделимости Хаксли. Что является «особью» у колониальных сифонофор или мхов? У ботаников есть серьёзные основания менее доверять словосочетанию «индивидуальный организм», чем у зоологов: «Особи плодовой мушки, мучного жука, кроликов, плоских червей или слонов – это популяции на клеточном, но не на любом более высоком уровне. Голодание не изменяет количество ног, сердец или печеней животного, но эффект стресса на растения состоит в изменении темпа формирования новых листьев, и темпа отмирания старых: растение может реагировать на стресс, изменяя количество его частей» (Harper 1977, PP. 20–21). Для Херпера, как популяционного биолога растений, листья могут быть более существенным «индивидуумом», чем «растение», так как растение – широко распределённая в пространстве, смутная сущность, репродукцию которого можно с трудом отличить от того, что зоолог счастливо назвал бы «ростом». Херпер чувствует себя обязанным ввести два новых термина для различных видов «индивидуумов» в ботанике. «“Рамета” – единица клонального роста – модуль, который часто может вести независимое существование, будучи отделённым от родительского растения». Иногда, как у земляники, рамета – единица, которую мы обычно называем «растением». В других случаях – таких, как белый клевер, рамета может быть отдельным листом. Напротив, «генета», является единицей, которая происходит от одной одноклеточной зиготы – «индивидуум» в смысле зоолога, изучающего животные с половым размножением.

1 ... 85 86 87 88 89 90 91 92 93 ... 102
Перейти на страницу:
На этой странице вы можете бесплатно скачать Расширенный фенотип: Дальнее влияние гена - Ричард Докинз торрент бесплатно.
Комментарии