- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Целостный метод – теория и практика - Марат Телемтаев
Шрифт:
Интервал:
Закладка:
Цель fij, реализуемая системой sij, будет состоять из двух компонентов: цели fi, описывающей изменение параметров перерабатываемого ресурса в целенаправленной части sai системы sij и изменения Δijfi происходящего во взаимодействующей части seij при транспортировании или складировании предмета труда до момента поступления на вход aj :
fij = { fi, Δijfi }
Очевидно, что система sij имеет общую часть sai с каждой системой sik.
Теорема 4.4.7. Система sij разложима на cистемы: основную целенаправленную saij и дополнительную seij:
sij= saij ⋃ seij;
saij= < { ai0, bi0, δеij, δaij }, wj, wy, фi, фij >;
seij = < {δai, δвi, dij0, eij0 }, wj, wy, фi, фij >.
Справедливость (4.4.16) очевидна из предыдущего изложения.
Теорема 4.4.8. Модели полной, основной и дополнительной систем S, Sa, Sе представляют собой теоретико-множественные объединения элементарных систем sij, sаij, sеij:
S = < ⋃ sij, W, Φ >;
Sa = <⋃ sаij, W, Φ >;
Se = <⋃ sеij, W, Φ>.
• В результате теоретико-множественного объединения sij, sаij, sеij сформируются множества-носители систем S, Sa, Se и, кроме того, объединение множества операций и отношений W' и Φ', определенных на элементарных системах:
S = < { А, В, D, Е }, W', Φ', W0, Φ0 >,
Sa = < { A0, B0, Δd, Δe }, W', Φ', W0, Φ0 >,
Se = < {Δa, Δв, D0, E0 }, W', Φ', W0, Φ0 >.
Множества операций W0 и предикатов Φ0 формируются в процессе создания систем S, Sa, Se из элементарных систем: вводится отношение порядка ≤, определяется набор предикатов и соответствующие отношения на множестве-носителе, отвечающие выбранным предикатам и т.д. В результате формируются множества W и Φ систем S, Sа, Se: W=W' ⋃ W0, Φ = Φ' ⋃ Φ0 и модели S, Sа, Se приводятся к виду (4.4.1).
• Изоморфизм и декомпозиция моделей. Изоморфизмом системы S на системы Sа, Se и др. будет взаимнооднозначное отображение множества-носителя системы S на множества-носители систем Sа, Se и др., сохраняющее главные операции и предикаты модели (4.4.1).
Изоморфизм рассмотрим на графовых моделях систем, процессов, структур. Два графа G1 = G1(V1, H1) и G2= G2(V2, H2) считаются изоморфными, если существует взаимооднозначное отображение такое, что V1 взаимнооднозначно отображается на V2 и H1 взаимнооднозначно отображается на H2, т.е. каждой вершине из V1 соответствует одна и только одна вершина из V2 и наоборот, а каждому ребру из H1 соответствует одно и только одно ребро из H2 и наоборот, каждому ребру из Н2 соответствует одно и только одно ребро из Н1.
Графы процессов и структур определим следующим образом:
G (P) = G (B,D), G(Pa)=G(B0, ∆d), G(Pe)= G(∆в, D0),
G( C) = G (A, E), G(Ca) = G (A0, ∆e), G (Ce)=G(∆a, E0).
Сформулируем следующий результат.
Теорема 4.4.9. Графы G(Р), G(С), G(Pa), G(Pe), G(Ca), G(Ce) изоморфны.
Доказательство его следует из очевидного здесь факта: изоморфны между собой множества в каждой тройке множеств: В, В0, ∆в; A, Aо, ∆a; D, D0, ∆d; E, E0, ∆e.
Графы систем определим следующим образом, как прямые суммы:
G (S) = G (P) ⋃ G ( C);
G (Sa) = G(Pa) ⋃ G (Ca);
G(Se) = G(Pe) ⋃ G(Ce).
Теорема 4.4.10. Графы G(S), G(Sa), G(Se) изоморфны.
Эти графы изоморфны, так как в соответствии с предыдущим результатом изоморфны их части, не пересекающиеся по вершинам и ребрам.
Графы процесса и структуры также могут быть представлены в виде прямых сумм частей, не пересекающихся по вершинам и ребрам:
G (P) = G(Pa) ⋃ G (Pe); G(C) = G (Ca) ⋃ G(Ce).
В силу этого можно сформулировать
Теорема 4.4.11. Графы G (S), G(Sa), G(Se), G(P), G(C) изоморфны.
• Полученные результаты позволяют сформировать следующую процедуру декомпозиции при исследовании систем. Вполне очевидно, что переход от графа G (S) к графу G(Sa) или G(Se) означает переход от более сложных задач к более простым. В то же время модель любого системного объекта, в том числе Sa и Se, можно представить в виде модели полной системы и вновь разложить его на модели G(Sa), G(Se) и др. Новая декомпозиция будет означать дальнейшее упрощение задач исследования системы. В то же время при повторной декомпозиции модели, как и при первой., вновь будут определены отношения взаимосвязи между частями модели. Сохраняя отношения взаимосвязи на каждом этапе, можно перейти к системе с более простыми задачами исследования – к «простой» системе, задачи которой разрешимы для исследователя. Затем можно, используя отношения взаимосвязи, перейти к решению задач исходной системы, как к некоторой композиции задач «простых» систем. Возможно, что «простая» система – это система, в которой нецелесообразно выделение дополнительной системы.
При такой декомпозиции не нарушается структура и процесс исследуемой системы, производится как бы расслоение системы. Образно можно определить, что это расслоение модели системы, декомпозиция «по толщине», возможная для математических моделей любых систем, когда каждая вершина и ребро графовой модели могут «расслаиваться» на две части в соответствии с определениями (4.4.5) – (4.4.7). Описанный способ декомпозиции вполне применим и в сочетании с известными методами.
• Алгоритм применения математических моделей. Рассмотрим на следующих примерах. Итак, в общем случае математические модели системы, процесса, структуры, элемента, элементарной структуры, элементарного процесса состоят из двух частей: одна основная, предназначена для реализации целей создания системы (Sa, Pa, Ca и др.), другая служит для обеспечения процессов взаимодействия в системе (Se, Pe, Ce и др.).
Так, в технологической системе, создаваемой для реализации процессов отбелки хлопчатобумажных тканей, основными элементами а являются реакторы, в которых последовательно происходят процессы пропитки ткани различными растворами. Это процессы b — элементарные процессы достижения целей. Элементы взаимодействия е — это транспортирующие и складирующие элементы, обеспечивающие передачу обрабатываемой ткани от одного процесса пропитки к другому или её хранение до начала следующего процесса, т.е. элементы, обеспечивающие элементарные процессы взаимодействия d во времени и в пространстве.
В тоже время в процессе обработки ткани также необходимо её транспортирование от начала элементарного процесса достижения цели к концу: для этого в основных элементах а, кроме основных частей конструкции а0, обеспечивающих протекание элементарных процессов отбеливания b0, предусматриваются транспортирующие механизмы δа, обеспечивающие прием ткани от транспорта (склада) на входе процесса, ее перемещение внутри аппарата в соответствии с технологией отбеливания и передачу ткани, прошедшей процесс, на последующие транспортно-складские средства, т.е. обеспечивающие элементарные процессы «взаимодействия между взаимодействиями» δa.
В транспортно-складских элементах взаимодействия е, в свою очередь, в процессе обеспечения взаимодействия между элементарными процессами отбеливания ткани, происходит изменение белизны ткани δd, которое не должно превышать некоторого заданного значения, для этого в транспортно-складские элементы необходимо ввести соответствующие части конструкции δa.
В результате, технологический системный процесс достижения цели – заданной белизны ткани, сложится из элементарных процессов изменения белизны ткани b0 — целенаправленных процессов, происходящих в предназначенных для этого конструкциях а0 и процессов δd «вынужденного» изменения белизны ткани, которые происходят в транспортно-складских элементах (в них обеспечивается ограничение изменений белизны ткани введением соответствующих частей конструкции δе). В свою очередь, технологический системный процесс взаимодействия во времени и в пространстве – процесс складирования и транспортирования сложится из элементарных процессов транспортирования и складирования d0 и процессов δв.

