- Любовные романы
- Фантастика и фэнтези
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Органическая химия - М. Дроздова
Шрифт:
Интервал:
Закладка:
Н2С=ССI-СН=СН2.
хлоропрен
Получающийся из ацетилена хлоропрен полимери-зуется, подобно бутадиену или изопрену, в длинные цепи каучукоподобного вещества, имеющего формулу (С4Н5СI1). Это вещество получило название наирит.
Второй этап синтеза каучука – полимеризация диенов – производится в присутствии катализаторов, например малого количества металлического натрия.
В настоящее время широко применяют разнообразные синтетические каучуки, получаемые путем полимеризации диенов (например, дивинила) с другими непредельными соединениями: стиролом С6Н5СН=CН2, акрилонитрилом Н2С=СН-СМ и др. Такой процесс называется сополимеризацией.
Многие из таких каучуков обладают ценными специфическими свойствами, выгодно отличающими их от природных каучуков.
24. Алкины
Углеводороды ряда ацетилена, имеющие общую формулу СпН2n – 2, содержат на четыре атома водорода меньше, чем соответствующие углеводороды ряда метана, на два атома водорода меньше, чем олефины, и столько же водорода, сколько диены, т. е. являются изомерами последних.
1. Строение, номенклатура и изомерия
Первым простейшим углеводородом этого ряда является ацетилен (С2Н2). В ацетилене, как и в других углеводородах этого ряда, содержится тройная связь. Действительно, к ацетилену присоединяется четыре атома галогена (или водорода), причем нетрудно убедиться, что присоединение идет к обоим атомам углерода. Следовательно, строение ацетилена нужно выразить формулой Н—С≡С—Н. При реакции присоединения тройная связь разрывается, у каждого из углеродных атомов освобождаются по две валентности, к которым и присоединяются атомы водорода, галогенов и др.
Большая реакционная способность тройной связи легко объясняется с позиции электронных представлений. Электронное строение тройной связи уже рассматривалось. Среди трех связей, соединяющих атомы углерода в ацетилене, одна s-связь и две р-связи. Энергия образования тройной связи 840 кДж/моль, тогда как энергия образования одинарной связи – 340 кДж/моль. Если бы три связи в молекуле ацетилена были одинаковы, то можно было бы ожидать энергию образования тройной связи 1020 кДж/моль. Следовательно, природа двух связей в тройной связи иная, чем в одинарной.
Названия углеводородного ряда ацетилена по женевской номенклатуре производятся от названий соответствующих предельных углеводородов, но окончание – ан заменяется на окончание – ин. Сам ацетилен по женевской номенклатуре называется этин.
Нумерацию атомов в формуле ацетиленового углеводорода начинают с того конца, к которому ближе расположена тройная связь.
Место тройной связи обозначается цифрой – номером того атома углерода, от которого начинается тройная связь.
Изомерия углеводородов ряда ацетилена зависит от изомерии цепи углеродных атомов и положения тройной связи.
2. Способы получения
Простой и широко распространенный способ получения ацетилена – из карбида кальция (СаС2). Карбид кальция получают в промышленном масштабе нагреванием угля в электрических печах с негашеной известью при температуре около 2500 °C:
Если на карбид кальция, представляющий собой обычно твердую серовато-коричневатую массу, подействовать водой, то он бурно разлагается с выделением газа – ацетилена:
Более новый производственный метод получения ацетилена – пиролиз углеводородов, в частности метана, который при 1400 °C дает смесь ацетилена с водородом:
2СН4 → Н – С = С – Н + 3Н2
Общий способ получения углеводородов ацетиленового ряда – синтез их из дигалогенопроизводных путем отщепления элементов галогеноводорода спиртовым раствором щелочи.
25. Физические свойства алкинов
Углеводороды от С2Н2 до С4Н6 представляют собой при обычных условиях газы, начиная с углеводорода с пятью атомами углерода в молекуле – жидкости, а начиная с С16Н30 – твердые тела. Закономерности в отношении температур кипения и плавления в этом ряду те же, что и углеводородов ряда метана и ряда этилена.
Химические свойства
Углеводороды ряда ацетилена в еще большей степени являются ненасыщенными, чем олефины. Для них характерны нижеперечисленные реакции.
1. Присоединение водорода. При этой реакции, так же как и при ряде других реакций, процесс присоединения идет в две стадии. Реакция, как в случае олефи-нов, протекает в присутствии катализаторов Pt, Ni.
2. Присоединение галогенов. Механизм присоединения галогенов к ацетилену такой же, как и к этилену.
Две стадии присоединения галогенов к ацетилену идут с разными скоростями: первая стадия идет медленнее, чем при присоединении к олефинам, т. е. практически ацетилен галогенизуется медленнее этилена. Это объясняется меньшим межатомным расстоянием между ненасыщенными атомами в молекуле ацетилена и близостью положительно заряженных ядер, способных отталкивать приближающиеся катионы.
3. Присоединение воды. Реакция присоединения воды к ацетилену, протекающая при каталитическом действии солей ртути, была открыта русским ученым М. Г. Кучеровым и обычно называется его именем. Реакция имеет большое практическое значение, т. к. уксусный альдегид в огромных количествах применяется в технике для получения уксусной кислоты, этилового спирта и ряда других веществ.
4. Полимеризация ацетиленовых углеводородов. В зависимости от условий реакция протекает различно. Так, ацетилен при пропускании через раствор CuСl и NH4Сl1 в соляной кислоте при 80 °C образует винил-ацетилен.
Эта реакция имеет большое практическое значение, так как винил-ацетилен, легко присоединяя НСI, превращается в хлоропрен.
Описанные реакции присоединения характерны для всех непредельных углеводородов, как этиленовых, так и ацетиленовых. Однако существуют реакции, свойственные только ацетиленовым углеводородам и резко отличающие их от этиленовых углеводородов.
5. Реакция образования металлоорганических соединений. Атомы водорода, стоящие у атомов углерода, связанных тройной связью, обладают способностью замещаться металлом. Если, например, пропускать ацетилен через аммиачный раствор хлорида меди (I), то образуется красно-бурый осадок ацетиленистой меди (ацетиленида меди):
Н—С≡С—H + 2CuCl2 + 2NH3 → Cu—С≡С—Cu + 2NH4Cl.
26. Ациклические углеводороды
Название алициклических соединений возникло в связи с тем, что они содержат циклы, но по свойствам близки веществам жирного ряда – алифатическим соединениям. Алициклические соединения не содержат характерных для производных бензола ароматических связей.
Исключительно большая роль в изучении алицикли-ческих соединений принадлежит русским ученым. Основоположником химии алициклических соединений является В. В. Марковников.
Большая группа углеводородов алициклического ряда представляет собой циклы, состоящие из нескольких метиленовых групп; эти углеводороды называются полиметиленовыми. Вторая большая группа алициклических углеводородов – производные мен-тана, к которому близки терпены.
Полиметиленовые углеводороды, или циклоалканы
Полиметиленовые углеводороды состоят из нескольких метиленовых групп (СН2), имеют общую формулу СпН2 п, т. е. являются изомерными олефинам. Полиметиленовые углеводороды называются также циклопарафинами, так как они, имея циклическое строение, в большинстве случаев обладают свойствами, близкими парафинам. Очень часто эти углеводороды, по предложению В. В. Марковникова, называют также нафтенами (что связано с выделением ряда их представителей из нефти).
Отдельные представители
Отдельные представители полиметиленовых углеводородов обычно называются по соответствующим насыщенным углеводородам жирного ряда с приставкой цикло-. Так, простейший полиметиленовый углеводород С3Н6 называется циклопропан; углеводород С4Н8 – циклобутан, углеводород С5Н10 – цикло-пентан и т. д. Способы получения
Такие циклопарафины, как циклопентан и циклогек-сан и их алкильные замещенные, в большом количестве содержатся в некоторых видах нефти, например в кавказской. Кроме того, существует ряд способов их синтетического получения, например отщепление двух атомов галогена от галогенопроизводных углеводородов жирного ряда, содержащих атомы галогена у соответствующих различных атомов.
Физические и химические свойства
Циклопропан и циклобутан при обычной температуре – газы, циклопентан и циклооктан – жидкости, высшие представители – твердые вещества.
По химическим свойствам циклопарафины близки парафинам. Это довольно стойкие в химическом отношении вещества, вступающие с галогенами в реакции замещения. Исключение составляют первые два представителя – циклопропан и циклобутан. Эти вещества, особенно циклопропан, ведут себя подобно ненасыщенным соединениям жирного ряда – они способны присоединять галогены с разрывом кольца и образованием дигалогенопроизводных жирного ряда. Различия в поведении циклопропана и циклобута-на и остальных представителей циклопарафинов объясняется теорией напряжения Байера.