- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Математика. Поиск истины. - Морис Клайн
Шрифт:
Интервал:
Закладка:
Пытаясь улучшить материальные условия своего существования, мы вынуждены расширять наше знание внешнего мира. Это побуждает нас напрягать до предела и наши органы чувств. К сожалению, они не только ограничены по своим возможностям, но и способны вводить нас в заблуждение. Если бы мы полагались только на наши органы чувств, то последствия этого могли бы быть самыми печальными. Нетрудно назвать случаи, когда наши чувства обманывают нас.
Самым ценным из пяти чувств, по-видимому, является зрение, и следует прежде всего проверить, в какой мере мы можем доверять ему. Начнем с примеров. За долгие годы ученые придумали и построили много обманчивых картинок, наглядно демонстрирующих, сколь ограничены возможности нашего глаза. Физики и астрономы в XIX в. проявляли большой интерес к оптическим иллюзиям, ибо их очень заботила надежность визуальных наблюдений. На рис. 1 показана T-образная фигура, предложенная Вильгельмом Вундтом, ассистентом знаменитого естествоиспытателя Германа Гельмгольца (1821-1894). При взгляде на эту картинку кажется, что вертикальная линия длиннее горизонтальной, хотя в действительности обе они имеют равную длину. Иллюзию Вундта можно обратить: на рис. 2 показана другая Т-образная фигура, у которой обе линии — горизонтальная и вертикальная — кажутся одинаковыми по длине, в действительности же горизонтальная линия длиннее.
Рис. 1.
Рис. 2.
Рис. 3, который предложил в 1899 г. Франц Мюллер-Лайер, дает нам пример иллюзии другого рода. Она известна под названием иллюзии Эрнста Маха. В действительности здесь обе горизонтальные линии имеют одинаковую длину.
Рис. 3.
Рис. 4.
На рис. 5 верхнее основание нижней трапеции кажется короче верхнего основания верхней трапеции. Попутно заметим, что, как ни трудно в это поверить, максимальная ширина нижней трапеции по горизонтали превышает ее высоту.
Рис. 5.
На рис. 6 поразительную иллюзию создают углы — тупой и острый: диагонали AB и AC двух параллелограммов равны, хотя диагональ AC кажется гораздо короче.
Рис. 6.
Удивительное впечатление производит также картинка с двумя наклонными линиями, пересекаемыми двумя вертикальными прямыми (рис. 7). Если правую наклонную линию продолжить, то она пересечется с левой в ее верхнем конце. Кажущаяся точка пересечения расположена несколько ниже. Эту хорошо известную иллюзию приписывают Иоганну Поггендорфу (около 1860).
Рис. 7.
Три горизонтальных отрезка на рис. 8 равны, хотя кажется, что они имеют различную длину. Эта иллюзия обусловлена величиной углов, образуемых с горизонтальными отрезками линий на концах. В определенных пределах больший угол вызывает иллюзию большего удлинения центрального горизонтального участка.
Рис. 8.
Поразительная иллюзия контраста изображена на рис. 9. Окружности в центре левой и правой фигур равны, хотя окружность в обрамлении шести окружностей большего радиуса кажется меньше, чем окружность в обрамлении шести окружностей меньшего радиуса.
Рис. 9.
Другой механизм лежит в основе иллюзии Мюллера-Лайера. Линии, отходящие от верхнего и нижнего концов вертикального отрезка A на рис. 10, воспринимаются как верхние и нижние края двух стен, образующих выступающий угол. Вертикальное ребро A выходит на первый план «сцены реального мира». Справа на рис. 10 две стены образуют угол, уходящий от зрителя. В результате вертикальное ребро B отступает на задний план. Убеждение в постоянстве размеров зрительно увеличивает длину ребра B и уменьшает длину ребра A.
Рис. 10.
Оптическую иллюзию, изображенную на рис. 11 и 12, первым описал Иоганн Цёлльнер. Он случайно заметил этот эффект на рисунке ткани. Длинные параллельные прямые на рис. 11 кажутся расходящимися, а на рис. 12 — сходящимися.
Рис. 11.
Рис. 12.
Картинка, демонстрирующая так называемую иллюзию Херинга (рис. 13), была впервые опубликована Эвальдом Херингом в 1861 г.: горизонтальные прямые кажутся здесь изогнутыми на фоне сходящихся наклонных прямых.
Рис. 13.
Ненадежность зрения подтверждается еще одним примером, придуманным С. Толанским. На рис. 14 изображена фигура, обычно встречающаяся в работах но статистике. Основание CD фигуры равно ее высоте. Если попросить зрителя провести отрезок, равный полуширине (половине CD) фигуры, то он, как правило, проводит отрезок AB, тогда как в действительности полуширине равен отрезок XY.
Рис. 14.
Нам всем хорошо знакома иллюзия, используемая широко, сознательно и высокопрофессионально, а именно реалистическая живопись. Художник намеренно пытается изобразить трехмерную сцену на плоском (двумерном) холсте. Одно из великих достижений художников эпохи Возрождения заключалось в создании математической схемы, известной под названием теории линейной перспективы, которая позволяет добиться желаемого эффекта.
С некоторыми простыми примерами иллюзии, рожденной линейной перспективой, мы встречаемся в своем повседневном опыте. Принцип, используемый в этих примерах и в теории линейной перспективы, состоит в том, что линии в реальной сцене, идущие от зрителя, должны казаться сходящимися в некоторой точке — так называемой точке схода. Простым примером могут служить два параллельных рельса железной дороги: кажется, что они сходятся-вдали в некоторой точке (рис. 15).
Рис. 15.
Эффект перспективы особенно заметен на рис. 16, где лучи, идущие в точку схода, проведены для создания иллюзии объемной сцены. Высокие ящики в действительности одинаковы (имеют одну и ту же длину, ширину и высоту), но кажется, что «дальний» ящик больше. Опыт говорит, что с увеличением расстояния до наблюдаемого предмета его размеры кажутся меньше, поэтому правый ящик выглядит больше, чем на самом деле.
Рис. 16.
Питая горячее пристрастие к реалистической живописи, мы охотно идем на то, чтобы быть обманутыми. Более того, этот обман доставляет нам удовольствие. Написанные в реалистической манере картины двумерны, но если они нарисованы в соответствии с законами математической теории линейной перспективы, то, глядя на них, мы испытываем такое ощущение, будто разглядываем трехмерную сцену. Хорошим примером такого рода «объемных изображений» может служить «Афинская академия» Рафаэля (рис. 17).
Рис. 17.
Резюмируя, мы можем утверждать, что математическая теория линейной перспективы позволяет использовать оптические иллюзии. Изображая на заднем плане предметы и человеческие фигуры меньших размеров, чем на переднем, художник добивается глубины изображения, ибо и в действительности человеческий глаз видит так, что далекие предметы кажутся ему меньше, чем близкие. Прибегают художники и к другому оптическому эффекту: краски более далеких предметов они смягчают, делая более блеклыми по сравнению с яркими красками предметов, находящихся на переднем плане.
В своем повседневном опыте мы сталкиваемся и с другими оптическими иллюзиями. Солнце и Луна вблизи горизонта выглядят по размерам больше, чем когда они стоят высоко в небе: вблизи горизонта оба светила кажутся нам ближе, и мы подсознательно поддаемся этой иллюзии. Разумеется, точные измерения показывают, что размеры Солнца и Луны остаются неизменными.
Измерив угол, под которым глаз видит диаметр Луны, мы обнаружили бы, что он близок к половине градуса. Так как половина дуги небосвода составляет 180°, угол, под которым виден диаметр Луны, равен 1/360 угловых размеров небосвода. Площадь же лунного диска составляет поразительно малую долю (около 1/100 000) площади небосвода, но если вспомнить, сколь великолепное зрелище являет собой наше ночное светило в полнолуние, то трудно поверить, что занимаемая им площадь столь ничтожна.
Ряд других оптических иллюзий связан с явлением рефракции, или преломления, света. Всем нам приходилось замечать, что палка, частично погруженная в воду, кажется переломленной в том месте, где она входит в воду.
С древних времен внимание людей привлекало такое проявление рефракции в воздухе как мираж. Это явление порождается совместным действием двух эффектов: разного преломления лучей света в неодинаково нагретых Солнцем (и потому имеющих различную плотность) слоях воздуха и полного внутреннего отражения. Когда нам случается в жаркий день ехать на автомобиле по длинному прямому участку гладкого ровного шоссе, то мы наблюдаем еще один мираж. Издали кажется, будто дорога впереди покрыта водой, но, подъехав ближе, мы убеждаемся, что воды нет и в помине. Чем же обусловлен такой эффект?

