Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Научпоп » У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - Gustavo Pineiro

У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - Gustavo Pineiro

Читать онлайн У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - Gustavo Pineiro

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 4 5 6 7 8 9 10 11 12 ... 28
Перейти на страницу:

— Шаг 1: возьмите любое положительное число.

— Шаг 2: назовите выбранное число х и вычислите 1/2(x + 2/x).

— Шаг 3: примените ту же формулу к полученному результату.

— Шаг 4: продолжайте применять ту же самую формулу столько раз, сколько пожелаете.

Если на первом шаге мы выбрали 5, в первый раз получим 2,7. Подставив 2,7 в формулу, получим 1,72037037..., затем 1,4414553..., затем 1,41447098..., и так далее, все больше приближаясь к √2.

Проблема нахождения системы аксиом для арифметики была представлена Гильбертом в докладе 1900 года (вторая проблема в списке), хотя в ее формулировку не было включено существование механической проверки рассуждений. Зато вопрос алгоритма появлялся в десятой проблеме, в которой спрашивалось, всегда ли возможно механически определить, имеет ли решение особый тип уравнений, называемых диофантовыми. Как мы видим, в докладе ученого появились, хотя и по отдельности, две центральные идеи формальной программы.

Иногда говорят, что Гильберт считал, будто работа математика должна сводиться к механическому процессу: он, словно компьютер, должен вычислять, но не думать. Но это не так. Механический характер носит только проверка справедливости аргументов, использованных математиком, а не открытие самих аргументов. Чтобы подчеркнуть эту разницу, Гильберт говорил о двух науках: математике и метаматематике. Объектом второй науки, механической и связанной с конечностью, была бы проверка методов первой.

АКСИОМЫ ПЕАНО

Давид Гильберт в качестве одной из кардинальных проблем представил нахождение множества аксиом арифметики, которые позволили бы доказать все истины теории (не упоминая необходимости механической проверки правильности использованных рассуждений). В своем докладе Гильберт не указал на существующие работы по этой теме. Это упущение вызвало недовольство Джузеппе Пеано — итальянского математика, присутствовавшего на лекции Гильберта. В1889 году он предложил аксиомы арифметики, считая, что они позволят вывести все истинные арифметические высказывания. Аксиомы Пеано, как они известны сегодня, имеют в качестве первичных элементов число 1, знаки сложения (+) и умножения (·) и функции последующего элемента (S).

— Аксиома 1: S(x) никогда не равно 1, то есть 1 не является последующим членом ни для какого числа.

— Аксиома 2: если S(x) = S(y), то х = у.

— Аксиома 3: х + 1 = S(x).

— Аксиома 4: х + S(y) = S(x + у).

— Аксиома 5: х · 1 = х.

— Аксиома 6: х · S(y) = х · у + х.

— Аксиома 7: если можно доказать, что 1 выполняет некое свойство, х его выполняет и S(x) — тоже, то можно сделать вывод: это свойство справедливо для всех натуральных чисел.

Последняя аксиома, также называемая схемой индукции, выражает тот факт, что все натуральные числа получаются на основе единицы повторяющимся применением функции последующего элемента. Если свойство справедливо для числа 1 и мы можем быть уверены, что оно будет распространяться на каждое число, выраженное последующим элементом, то это свойство будет справедливо для всех натуральных чисел. Следствие из теоремы Гёделя состоит в том, что если учитывать условие алгоритмической проверки всех рассуждений, то будут существовать арифметические истины, недоказуемые на основе этих аксиом. Таким образом, арифметика будет неполной.

С 1920 по 1930 год Гильберт опубликовал ряд статей, в которых постепенно излагал свою программу и показывал, как ее можно осуществить на практике. Другие математики увлеклись этой идеей и внесли значительный вклад в ее осуществление. Сам Гёдель в 1929 году, защищая докторскую диссертацию, показал, что можно установить методы рассуждения, правильность которых может быть проверена алгоритмически. В том же году польский математик Мойжеш Пресбургер представил ряд аксиом, непротиворечивость которых можно было проверить алгоритмически. Они позволяли доказать хотя и не все арифметические истины, но их значительную часть. Это были две важные победы формальной программы.

В то же время интуиционизм терял авторитет среди математиков. Многие из тех, кто симпатизировал общим идеям Брауэра, начинали чувствовать, что их реализация на практике, предполагавшая отказ от рассуждений из области теории множеств, принесет больше потерь, чем преимуществ. Формальная программа, в свою очередь, предлагала альтернативу, которая была допустима с философской точки зрения и осуществима на практике.

К 1930 году стало ясно, что Гильберт победил. Оставалось только помочь интуиционистам сохранить лицо и достойно сдаться. В Кёнигсберге, родном городе Гильберта (выбор, конечно, не случаен), был организован конгресс, посвященный основаниям математики. Он проводился с пятницы 5 сентября по воскресенье 7 сентября; на понедельник было назначено награждение Гильберта званием почетного гражданина Кёнигсберга. Все было готово к великой победе учителя.

В пятницу представляли свои работы менее значимые, неизвестные математики. В субботу выступали более значимые, среди них был Ханс Хан, руководитель докторской диссертации Гёделя. Брауэр, который враждовал с Гильбертом по причинам, выходившим далеко за рамки академической науки, не присутствовал; интуиционистскую точку зрения излагал Аренд Гейтинг. Гильберт, имевший проблемы со здоровьем, также отсутствовал, и его главным представителем был его ученик Джон фон Нейман. На конгрессе присутствовал и представитель логицизма, философ Рудольф Карнап. В воскресенье конгресс закрылся пленарным заседанием, на котором были подведены итоги точек зрения интуиционизма, формализма и логицизма. Резюме подвел Гейтинг. Завершая выступление, он сказал, что отношения между интуиционизмом и формализмом наконец-то прояснились и больше нет необходимости продолжать борьбу между этими школами: «Если выполнится программа Гильберта, даже интуиционисты примут бесконечность с распростертыми объятиями». Интуиционисты сдались. Гильберт победил.

Какое значение могут иметь жалкие остатки, немногочисленные, неполные, не связанные друг с другом единичные результаты, которые были выработаны интуиционистами, по сравнению с могущественным размахом современной математики.

Давид Гильберт об интуиционистской школе

Все очевидцы говорят, что именно в этот момент неизвестный молодой математик скромно поднял руку, прося слова. Он был худым, носил очки и, похоже, очень нервничал. Этот молодой человек, Курт Гёдель, объявил, что доказал следующую теорему: если требуется, чтобы доказательства проверялись механически, то невозможно задать аксиомы арифметики, которые позволили бы доказать все истины теории; всегда будут истинные утверждения, которые будет невозможно доказать на основе предложенных аксиом. (Сегодня это утверждение известно как первая теорема Гёделя о неполноте.) Более того, если предложенные аксиомы позволяют доказать довольно обширную часть арифметических истин, то невозможно проверить их непротиворечивость механическими методами. (Это вторая теорема Гёделя о неполноте.) Другими словами, программа Гильберта абсолютно нереализуема.

Мы можем представить себе сцену, которой на самом деле не было, но которая отражает состояние духа формалистов в тот воскресный вечер. Представим себе, что Гильберт звонит по телефону Джону фон Нейману, чтобы спросить его, как все прошло, и тот отвечает: «У меня одна хорошая новость и одна плохая. Хорошая — интуиционисты сдались. Плохая — Гёдель говорит, что и мы проиграли».

Как Гёделю удалось доказать свою теорему? Как можно доказать, что, независимо от предлагаемых аксиом, всегда будет существовать утверждение истинное, но недоказуемое на их основе? Доказательство Гёделя, один из самых больших интеллектуальных подвигов XX века, будет центральной темой следующей главы.

ГЛАВА 2

Первая теорема Гёделя

В первой теореме Гёделя о неполноте говорится, что при любом заданном множестве аксиом арифметики всегда будет существовать истинное арифметическое высказывание, которое невозможно доказать на основе этих аксиом, если пользоваться только теми методами доказательства, которые удовлетворяют программе Гильберта. Доказательство этой теоремы, по сути, состоит в том, чтобы получить самореферентное высказывание, которое говорит о себе: «Я недоказуемо».

После окончания Первой мировой войны Австро-Венгерская империя была разделена на части. Некоторые из них, такие как Австрия, Венгрия, Югославия и Чехословакия, стали отдельными странами. Другие вошли в состав уже существовавших государств, таких как Италия или Румыния. После этого раздела город Брно, в котором жила семья Гёделя, был присоединен к Чехословакии. Курт вспоминал, что с этого момента его отец всегда чувствовал себя австрийцем в изгнании. Возможно, это ощущение в какой-то степени повлияло на решение послать обоих сыновей учиться в Венский университет, чтобы они хотя бы таким образом могли вернуться на родину.

1 ... 4 5 6 7 8 9 10 11 12 ... 28
Перейти на страницу:
На этой странице вы можете бесплатно скачать У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - Gustavo Pineiro торрент бесплатно.
Комментарии