- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Мир-фильтр. Как алгоритмы уплощают культуру - Кайл Чейка
Шрифт:
Интервал:
Закладка:
Ringo тестировала различные алгоритмы для принятия решений на основе музыкальных рейтингов. Первый алгоритм измерял несходство между вкусами пользователей и основывал рекомендации на максимальном сходстве. Второй измерял сходство, а затем использовал для принятия решений положительные и отрицательные корреляции с другими пользователями. Третий определял корреляцию между различными исполнителями и рекомендовал музыкантов, которые сильно коррелировали с теми, что уже нравились данному человеку. Четвертый алгоритм (по мнению исследователей, самый эффективный) подбирал пользователей на основе того, положительно или отрицательно они оценивали одни и те же вещи – иными словами, на основе совпадения вкусов. Сходство оказалось наилучшей переменной. Чем больше пользователей включалось в систему и чем больше сведений они предоставляли, тем лучше работала Ringo – некоторые пользователи даже назвали систему “пугающе точной”. Инновация Ringo заключалась в том, что она подтверждала: наилучшим источником точных рекомендаций или лучших индикаторов релевантности, скорее всего, являются другие люди, а не анализ самого содержания. Концепция отражала повышение важности человеческого вкуса.
Первые алгоритмы интернета разработали для того, чтобы просеивать огромное количество материала в поисках вещей, важных для пользователя, и затем представлять их в связном виде. Целью были рекомендации: рекомендовать ту или иную информацию, песню, картинку или новость в социальных сетях. Алгоритмическую подачу информации иногда более формально и буквально называют “рекомендательными системами” за простой акт выбора того или иного контента.
Первым полностью общедоступным интернет-алгоритмом, с которым сталкивался практически каждый пользователь интернета, стал алгоритм поиска Google. В 1996 году, учась в Стэнфордском университете, соучредители Google Сергей Брин и Ларри Пейдж начали работу над тем, что впоследствии превратилось в PageRank – систему ранжирования страниц интернета (который на тот момент насчитывал около ста миллионов документов); она просматривала веб-страницы и определяла, какие из них окажутся полезнее или информативнее. Алгоритм PageRank подсчитывал, сколько раз на данный сайт ссылались другие, подобно тому, как авторы научных работ ссылаются на результаты предыдущих серьезных исследований. Чем больше ссылок, тем более важной считалась страница. Показатель цитирования “согласуется с субъективным представлением людей о важности”, – писали Брин и Пейдж в 1998 году в работе “Анатомия системы крупномасштабного гипертекстового интернет-поиска”. Алгоритм PageRank объединил форму совместной фильтрации с фильтрацией на основе содержания. Связывая различные страницы, люди-пользователи формировали субъективную карту рекомендаций, которую учитывал алгоритм. Он также измерял такие факторы, как количество ссылок на странице, относительное качество этих ссылок и даже размер текста – чем он длиннее, тем более релевантным может оказаться текст для конкретного поискового запроса. Страницы с высоким значением PageRank с большей вероятностью появлялись в верхней части списка результатов, которые выдавала поисковая система Google.
Прогноз Пейджа и Брина относительно того, что их система останется функциональной и масштабируемой по мере развития интернета, оказался верным. Спустя десятилетия PageRank стал почти тиранической системой, которая управляет тем, как и когда видны сайты. Для любого бизнеса или ресурса жизненно важно приспособиться к алгоритму ранжирования и попасть на первую страницу результатов поиска Google. В начале 2000-х годов мне приходилось просматривать множество выдаваемых страниц, чтобы найти то, что мне требовалось. В последнее время я почти никогда не добираюсь даже до второй страницы – в частности, благодаря тому, что поисковая система Google теперь еще и сама показывает текст, который сочла релевантным: она берет его с сайта и демонстрирует пользователю в верхней части страницы – выше фактических результатов поиска. Таким образом, пользователь, спросивший: “Можно ли кормить собаку морковью?” (я без устали искал ответ на этот вопрос, когда у меня впервые появился щенок), сразу получает ответ, и у него отпадает необходимость заходить на другой сайт, что еще сильнее укрепляет авторитет Google. “Знание – сила”, – писал Фрэнсис Бэкон в XVI веке, однако в эпоху интернета, возможно, еще больше преимуществ дает сортировка знаний. Информацию сегодня найти легко; гораздо сложнее разобраться в ней и понять, какие сведения полезны.
Пейдж и Брин хотели, чтобы их система была относительно нейтральной и оценивала каждый сайт исключительно с точки зрения его релевантности. Задача алгоритма заключалась в предоставлении пользователю наилучшей информации. Ориентирование поиска на определенный сайт или бизнес испортило бы результаты. “Мы полагаем, что поисковые системы, финансируемые за счет рекламы, будут по своей сути отдавать предпочтение рекламодателям и не учитывать нужды потребителей”, – писали предприниматели в 1998 году. И тем не менее в 2000 году они запустили Google AdWords – пилотный продукт компании для рекламодателей (сейчас он называется Google Ads). Забавно читать их критику сегодня, когда именно реклама обеспечивает подавляющую часть доходов компании – более 80 % в 2020 году. Поскольку алгоритм PageRank привел в поисковую систему Google миллиарды людей, компания также получила возможность отслеживать, что ищут пользователи, и таким образом продавать рекламодателям позиции в выдаче при определенных поисковых запросах. Как и результаты поиска, рекламные объявления, показываемые пользователю, тоже определяются алгоритмом. И эта реклама, построенная на поисковом алгоритме, сделала Google настоящим левиафаном.
К началу 2000-х годов наш цифровой опыт уже определялся алгоритмической фильтрацией. Сайт Amazon еще в 1998 году начал использовать совместную фильтрацию при рекомендациях товаров клиентам. Однако система компании не пыталась обнаруживать сходные профили пользователей, чтобы приблизительно оценивать вкусы, как это делала Ringo; она определяла товары, которые часто покупают вместе, – например, погремушка и детская бутылочка. Статья 2017 года, созданная одним из сотрудников Amazon, описывает подобные предложения на сайте:
На главной странице выделялись рекомендации, основанные на ваших прошлых покупках и просмотренных товарах… Корзина рекомендовала добавить другие товары – возможно, спонтанные покупки, которые делаются в последнюю минуту, а возможно, дополнения к тому, что вы уже рассматривали. По окончании заказа появлялись дополнительные рекомендации, предлагающие заказать товары позже.
Такие алгоритмические рекомендации напоминают полки, расположенные непосредственно перед кассой в супермаркетах, – последний стимул купить товары, которые могут вам пригодиться. Но в данном случае рекомендации подбирались индивидуально для каждого пользователя сайта, и в результате, как утверждала статья, получался “магазин для каждого покупателя”. Amazon обнаружила, что персонализированные рекомендации товаров гораздо эффективнее с точки зрения количества кликов и продаж, чем неперсонализированные методы маркетинга – например, реклама на баннерах и списки наиболее популярных товаров, которые нельзя нацелить столь же точно. Алгоритм рекомендаций продвигал бизнес и оказался удобен для покупателя, который получил возможность находить вещи, о необходимости которых даже не подозревал. (Прямо сейчас главная страница Amazon рекомендует мне мойку с аккумуляторным питанием и японскую сковороду для омлета.)
Первые подобные алгоритмы сортировали отдельные электронные письма, музыкантов (в отличие

