- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер
Шрифт:
Интервал:
Закладка:

Рис. 6.1. Атомы нагретого вещества испускают свет, который обычно имеет лишь очень определенные частоты. С помощью призмы различные частоты можно разделить и получить характерные для атомов спектральные линии
Начало квантовой теории
Как же разрешить все эти загадки? Очевидно, что исходную ньютоновскую схему частиц-корпускул необходимо дополнить максвелловским полем. Можно ли встать на противоположную точку зрения и предположить, что мир построен только из полей, а частицы представляют собой не что иное, как небольшие «сгустки» поля определенного вида? Этот подход имеет свои трудности, ибо такие частицы могли бы непрерывно изменять свою форму, извиваться и совершать колебания бесконечно большим числом способов. Но ничего подобного в действительности не наблюдается. В реальном мире все частицы одного вида, по-видимому, идентичны. Например, любые два электрона тождественны. Даже атомы и молекулы могут изменять свои конфигурации только дискретно[141]. Если частицы — это всего лишь поля, то необходимо ввести в теорию нечто новое, что заставило бы их иметь дискретные характеристики.
В 1990 году блестящий, но осторожный немецкий физик Макс Планк выдвинул революционную идею для подавления высокочастотных мод излучения «абсолютно черного тела». Идея состояла в том, что излучение и поглощение электромагнитного поля может происходить только «квантами», энергия Е которых связана с частотой v следующим соотношением:
E = hv
где h — новая фундаментальная постоянная природы, известная как постоянная Планка. Самое удивительное, что эта «бунтарская» идея позволила Планку достичь теоретического согласия с наблюдаемой зависимостью интенсивности излучения «абсолютно черного тела» от частоты (закон излучения Планка). (По современным данным постоянная Планка очень мала и составляет около 6,6 х 10-34 Дж/с.) Смелая гипотеза Планка стала первым проблеском квантовой теории, но это событие не привлекло к себе внимания физиков до тех пор, пока Эйнштейн не выдвинул еще одну поразительную идею о том, что электромагнитное поле не только излучается, но и существует в виде таких дискретных порций. Таким образом, согласно Эйнштейну (и Ньютону, который высказывал аналогичное утверждение за два столетия раньше) свет представляет собой поток частиц! Вспомним, что в начале XIX века блестящий теоретик и экспериментатор Томас Юнг наглядно продемонстрировал волновую природу света, а Максвелл и Герц теоретически показали, что свет представляет собой колебания электромагнитного поля.
Каким образом свет может быть одновременно и частицами, и волнами? Ведь корпускулярная и волновая концепции представляются полностью противоположными. Тем не менее, одни экспериментальные факты явно указывают на то, что свет — это поток частиц, а другие на то, что свет — это волны. В 1923 году французский аристократ и проницательный физик маркиз Луи де Бройль продвинулся в этом вопросе еще дальше, высказав в своей докторской диссертации (которая снискала одобрение Эйнштейна!) идею о том, что частицы материи иногда ведут себя как волны! Частота v волны де Бройля любой частицы с массой m также удовлетворяет соотношению Планка. Комбинируя это с формулой Эйнштейна Е = mc2, можно найти связь частоты v с массой m:
hv = Е = mс2.
Таким образом, согласно идее де Бройля, раздельное существование частиц и полей, бывшее в почете у классической теории, отвергается природой! Действительно, все, что осциллирует с частотой v, может существовать только в виде дискретных порций с массой hv/c2. Природа каким-то образом «умудряется» построить непротиворечивый мир, в котором частицы и осцилляции поля суть одно и то же! Или, точнее, мир природы состоит из каких-то более тонких составляющих, а представления о «частице» и «волне» лишь частично отражают реальность.
Еще один яркий пример проявления соотношения Планка нашел в 1913 году Нильс Бор — датский физик и выдающийся мыслитель XX века. Правила Бора требовали, чтобы угловой момент (гл.6 «Уравнение Шредингера; уравнение Дирака») электрона на ядерной орбите мог принимать только значения, кратные величине h/2π, для которой Дирак ввел более удобное обозначение ħ:
ħ = h/2π
Таким образом, разрешены только следующие значения углового момента (относительно любой оси),
0, ħ, 2ħ, 3ħ, 4ħ…
С учетом этого нововведения «планетарная» модель атома позволила с большой точностью вычислить частоты энергетических уровней и объяснить те «безумные» правила, которым в действительности следует природа.
Несмотря на поразительный успех, блестящая гипотеза Бора была только временной схемой, своего рода «новой заплатой на старые меха» и получила название «старой квантовой теории». Сегодняшняя квантовая физика произошла из двух независимых схем, предложенных позже немцем Вернером Гейзенбергом и австрийцем Эрвином Шредингером («матричной механики» в 1925 году и «волновой механики» в 1926 году, соответственно). Сначала две эти две схемы казались совершенно различными, но вскоре они были включены в более общую теорию как ее эквивалентные представления. Это было сделано главным образом британским физиком-теоретиком Полем Адриеном Морисом Дираком. В последующих главах мы попытаемся окинуть беглым взглядом квантовую теорию и ее необычные следствия.
Эксперимент с двумя щелями
Рассмотрим «архетипичный» квантовомеханический эксперимент, в котором пучок электронов, света или любых других «волн-частиц» направляется сквозь две узкие щели на расположенный позади них экран (рис. 6.3).

Рис. 6.З. Эксперимент с двумя щелями и монохроматическим светом (Обозначения на рисунке: S (англ. sourse) — источник, t (англ. top) — верхняя [щель], b (англ. bottom) — нижняя [щель]. — Прим. ред.)
Для большей конкретности выберем свет и условимся называть квант света «фотоном» согласно принятой терминологии. Наиболее очевидное проявление света как потока частиц (фотонов) наблюдается на экране. Свет достигает экрана в виде дискретных точечных порций энергии, которые всегда связаны с частотой света формулой Планка: Е = hv. Энергия никогда не передается в виде «половинки» (или иной доли) фотона. Регистрация фотонов представляет собой явление типа «все или ничего». Всегда наблюдается только целое число фотонов.
Но при прохождении через две щели фотоны обнаруживают волновое поведение. Предположим, что сначала открыта только одна щель (а вторая — наглухо закрыта). Пройдя через эту щель, пучок света «рассеивается» (это явление называется дифракцией и является характерным для распространения волн). Пока еще можно придерживаться корпускулярной точки зрения и считать, что расширение пучка обусловлено влиянием краев щели, заставляющем фотоны отклоняться на случайную величину в обе стороны. Когда свет, проходящий через щель, обладает достаточной интенсивностью (число фотонов велико), то освещенность экрана кажется равномерной. Но если интенсивность света уменьшить, то можно с уверенностью утверждать, что освещенность экрана распадется на отдельные пятна — в согласии с корпускулярной теорией. Яркие пятна располагаются там, где отдельные фотоны достигают экрана. Кажущееся равномерным распределение освещенности представляет собой статистический эффект, обусловленный очень большим числом участвующих в явлении фотонов (рис. 6.4).

