- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Tertium Organum: ключ к загадкам мира, изд. 2-е - Петр Демьянович Успенский
Шрифт:
Интервал:
Закладка:
Совершенно в таком же положении находимся [,возможно,] мы, когда мы мёртвые пробуждаемся [после смерти], то есть когда мы, люди, переходим к самоощущению другой жизни, к постижению высших сущностей.
Тот же испуг, та же потеря реального, то же ощущение одной сплошной нелогичности.
Чтобы реализовать новый мир, мы должны понять новую логичность.
* * *
Наша обычная логика помогает нам разбираться только в отношениях феноменального мира. Было очень много попыток определить, что такое логика? Но логика по существу неопределима, так же как математика.
Что такое математика? Наука о величинах.
Что такое логика? Наука о понятиях.
Но это не определения, а только перевод названия. Математика, или наука о величинах, есть система, изучающая количественные отношения между вещами; логика, или наука о понятиях, есть система, изучающая качественные (категорические) отношения между вещами.
Логика построена совершенно по одному плану с математикой. Как логика, так и математика (по крайней мере, общеизвестная математика «конечных» и «постоянных» чисел) выведены нами из наблюдения феноменов нашего мира. Обобщая свои наблюдения, мы постепенно нашли отношения, которые мы назвали основными законами мира.
В логике эти основные законы заключены в аксиомах Аристотеля и Бэкона:
А есть А (что было А, то и будет А);
А не есть не А (что было не А, то и будет не А);
Всякая вещь есть или А, или не А (всякая вещь должна быть А или не А).
Логика Аристотеля и Бэкона, разработанная и дополненная их многочисленными последователями, оперирует только с понятиями.
Слово, логос [(от др. — греч. λόγος)], вот предмет логики. Идея — для того, чтобы стать предметом логических рассуждений, для того, чтобы подлежать логическим законам — должна быть выражена в слове. То, что не может быть выражено в слове, не может войти в логическую систему. И при этом слово может войти в логическую систему, подлежать логическим законам, только как понятие.
Само по себе слово может иметь ещё другое значение, кроме обычно связанного с ним понятия: оно может иметь символическое или аллегорическое значение, может заключать в себе известную музыку или определённый эмоциональный тон. Но всё это войти в логическую систему не может. Какое бы символическое, аллегорическое, музыкальное или эмоциональное значение ни имело слово, в логическое построение оно войдёт только в своём логическом значении, то есть — как понятие.
В то же время мы прекрасно знаем, что не всё может быть выражено в словах. В нашей жизни и в наших чувствах очень много такого, что не укладывается в понятия. Таким образом ясно, что даже в настоящий момент, на настоящей ступени нашего развития, далеко не всё может быть для нас логическим. Есть очень много вещей внелогических по существу. Такова вся область чувств, эмоций, религии. Всё искусство — одна сплошная нелогичность. И, как мы сейчас увидим, совершенно нелогической является математика, самая точная из наук.
Если мы сравним аксиомы логики Аристотеля и Бэкона с аксиомами общеизвестной математики, то мы найдём между ними полное сходство.
Аксиомы логики
«А есть А»,
«А не есть не А»,
«Всякая вещь есть или А, или не А»
вполне соответствуют основным аксиомам математики, аксиомам тождества и противоречия:
Всякая величина равна самой себе;
Часть меньше целого;
Две величины, равные порознь третьей,
равны между собой
и т. д.
Сходство аксиом математики и логики идёт очень глубоко, и это позволяет сделать заключение об их одинаковом происхождении.
Законы математики и законы логики — это законы отражения феноменального мира в нашем сознании.
Как аксиомы логики могут оперировать только с понятиями и относятся только к понятиям, так аксиомы математики могут оперировать только с конечными и постоянными величинами и относятся только к ним.
По отношению к бесконечным и переменным величинам эти аксиомы неверны так же, как аксиомы логики неверны по отношению к эмоциям, к символам, к музыкальности и к скрытому значению слова.
Что это значит?
Это значит, что аксиомы логики и математики выведены нами из наблюдения явлений, то есть феноменального мира, и представляют собой известную условную неправильность, нужную для познания [нашего] нереального мира.
* * *
Раньше было указано, что у нас, собственно, есть две математики. Одна — математика конечных и постоянных чисел, [которая] представляет собой совершенно искусственное построение для решения задач на условных данных. Главное из этих условных данных заключается в том, что в задачах этой математики всегда берётся только t вселенной, то есть берётся только один разрез вселенной, который никогда не смешивается с другим разрезом. Таким образом, математика конечных и постоянных величин изучает искусственную вселенную, и сама по себе есть нечто, специально созданное на основании нашего наблюдения явлений и служащее для облегчения этих наблюдений. Дальше явлений математика конечных и постоянных чисел пойти не может. Она имеет дело с воображаемым миром, с воображаемыми величинами.
Другая — математика бесконечных и переменных величин, представляет собою нечто совершенно реальное, построенное на основании умозаключений о реальном мире.
Первая относится к миру феноменов, который представляет собою ничто иное, как наше неправильное восприятие мира.
Вторая относится к миру ноуменов, который представляет собою мир как он есть.
Первая — нереальна, существует только в нашем сознании, в нашем воображении.
Вторая реальна, выражает отношения реального мира.
* * *
Примером «реальной математики», нарушающей основные аксиомы нашей математики (и логики), являются так называемые трансфинитные числа.
Трансфинитными числами, как показывает их название, называются числа за бесконечностью.
Бесконечность, изображённая знаком ∞ есть математическое выражение, с которым, как с таковым, можно производить все действия: делить, множить, возводить в степень. Бесконечность можно возвести в степень бесконечности, будет ∞^∞. Эта величина в бесконечное число раз больше простой бесконечности. И в то же время они равны: ∞ = ∞^∞. Вот это и есть самое замечательное в трансфинитных числах. Вы можете производить с ними какие угодно действия, они будут соответствующим образом изменяться, оставаясь в то же время равными. Это нарушает основные законы математики, принятые для конечных, финитных, чисел. Изменившись, конечное число уже не может быть равно самому себе. А здесь мы видим, как, изменяясь, трансфинитное число остаётся равным самому себе.
При этом трансфинитные числа совершенно реальны. Выражениям ∞ и даже ∞^∞ и ∞^∞^∞ мы можем найти соответствующие примеры в реальном мире.
Возьмём линию, любой отрезок линии. Мы знаем, что число точек в

