- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Институты и путь к современной экономике. Уроки средневековой торговли - Авнер Грейф
Шрифт:
Интервал:
Закладка:
Условие VIII.1
Существует такое (ψ i,d, ψ j,d), при котором для k ∈ {i, j}:
а) инвестиции осуществимы: ψ k,d ≤ λ k [I(T) + R(T)];
б) они максимизируют выигрыши: ψ k,d ∈ arg max V k,d (λ k, T; ψ k) при условии пункта «в»;
в) достижения сдерживания: ∀ ψ —k ≤ λ —k[I(T) + R(T)], ψ —k ≥ ψ k,d, δV —k,d (λ —k, T; ψ —k,d) ≥ δs —k,w (ψ —k, ψ k,d)V —k,c (T, θ) – (c + (ψ —k – ψ —k,d))(1 – δ). [ICC —k]
Если условие VIII.1 соблюдается, есть осуществимая инвестиция для каждого клана (пункт «а»), являющаяся самой низкой инвестицией (пункт «б»), которая будет удерживать другой клан от вступления в конфронтацию для любой возможной инвестиции другого клана (пункт «в»). Если совершенное в подыгре равновесие со взаимным сдерживанием (λk, T) существует, условие VIII.1 будет выполняться.
Если оно выполняется, из этого прямо следует, что такое равновесие существует[255]. В частности, если условие VIII.1 удовлетворяется, следующая комбинация стратегий является равновесием со взаимным сдерживанием (λk, T): если конфронтация никогда не происходила, клан k ∈ {i, j} сотрудничает в пиратстве и инвестирует ψk,d в военную силу. Клан не вступает в конфронтацию, если ψ —k ≥ ψ k,d, а в противном случае – вступает. Ни один из кланов не сотрудничает в пиратстве после конфронтации. Если клан k когда-либо выигрывал в конфронтации, он инвестирует ψk,c в подготовку к тому, чтобы дать отпор внешней угрозе[256].
Атрибуты эффективности равновесия со взаимным сдерживанием при эндогенном количестве привилегий
Предположим, что доход от привилегий I(T) возрастает, а доход от пиратства R(T) убывает при количестве привилегий Т. В частности, I′(T) ≥ 0 и R′(T) ≤ 0. Предположим, что функция I(T) + R(T) является строго вогнутой и имеет единственный максимум, который представляет собой экономически эффективное количество привилегий τ ∈ (0, T̅), I′(τ) + R′(τ) = 0. Таким образом, экономически эффективным равновесием со взаимным сдерживанием является τ. Оптимальное равновесие со взаимным сдерживанием для клана k максимизирует его средние выигрыши, а именно Vk,d(λk, T; ψk).
Предположим, что доход от привилегий I(T) возрастает, а доход от пиратства R(T) убывает при количестве привилегий Т. В частности, T(T) > 0 и R'(T) < 0. Предположим, что функция I(T) + R(T) является строго вогнутой и имеет единственный максимум, который представляет собой экономически эффективное количество привилегий т е (0, T), I (т) + R' (т) = 0. Таким образом, экономически эффективным равновесием со взаимным сдерживанием является т. Оптимальное равновесие со взаимным сдерживанием для клана k максимизирует его средние выигрыши, а именно Vk4(k, T; yk).
Чтобы установить, был ли мир достигнут в ущерб торговому процветанию, нам нужно определить, является ли действительное равновесие со взаимным сдерживанием еще и оптимальным равновесием со взаимным сдерживанием для каждого конкретного клана. Другими словами, действительно ли сотрудничество в приобретении экономически эффективного количества привилегий (которое максимизирует общий прирост) является лучшим, что может сделать каждый клан?[257] Если ответ отрицательный, мы можем заключить, что теоретически потребность поддержания в Генуе политического порядка препятствовала экономической эффективности. Затем мы можем использовать модель для выявления источника этой эффективности.
Интересен случай, когда эффективное количество привилегий влечет за собой положительные инвестиции в военную силу. Формально необходимым условием для равновесия со взаимным сдерживанием (Xk, T), характеризующимся положительными инвестициями в военную силу, является следующее: существует такая положительная инвестиция для одного клана, которая делает конфронтацию выгодной для него, если другой клан не делает инвестиций, т. е. для k = i или j, ∃ ψk ≤ λ k [I(T) + R(T)] такое, что δs k,w(ψ k,0)V k,c(T, θ) – (c + ψ k)(1 – δ) > δV k,d(λ k, T; 0). Это условие с большей вероятностью будет выполняться, если значение θ ниже (когда V k,c возрастает в θ), с ниже или δ выше.
Теорема VIII.1 гласит, что когда эффективное равновесие со взаимным сдерживанием характеризуется положительными инвестициями в военный потенциал, оно максимизирует валовый средний выигрыш клана, но не чистый средний выигрыш[258].
Теорема VIII.1
a) Предположим, что равновесие со взаимным сдерживанием (λk, τ) существует, равновесные инвестиции кланов в военную силу ψ k,* (τ) являются строго положительными (без потери общности), ∂2s(∙/∂ψk2 < 0, и ∂2ω(∙)/(∙)/∂ψk2 > 0 для k = i, j (а именно k = i и k = j). Тогда чистый средний выигрыш каждого клана максимзируется в τ.
b) Предположим, что равновесие со взаимным сдерживанием (λk, Т) существует для каждого Т и потенциальных инвестиций в военную силу ψk,d (T), является строго положительным для k = i, j (без потери общности). Тогда, если оптимальное для клана количество привилегий не равно нулю, его чистый средний выигрыш максимизируется при равновесии со взаимным сдерживанием (λk, Т *) таком, что T * < τ и λk ∂I(T *)/∂(T) = ∂ψ—k,d (T *)/∂T —λk ∂R(T *)/ ∂T.
Доказательство. При равновесии со взаимным сдерживанием (λk, Т) оптимальные для клана k инвестиции таковы, что ограничение по стимулу в условии VIII.1 ICC-k является обязательным на самой большой осуществимой инвестиции для клана – k, т. е. λ—k[I(T) + R(T)]. Это локальное обязательное ограничение имплицитно определяет ψ—k как функцию от Т, т. е. ψ—k,d (T). Наиболее выгодное для клана k равновесие со взаимным сдерживанием (Т) – это равновесие, которое максимизирует его доход за период при равновесии со взаимным сдерживанием, т. е. H(T) = λk[I(T) + R(T)] – ψ —k,d (T). Условием первого порядка для максимизации является:
Оцениваемое при Т = τ, это условие первого порядка выполняется тогда и только тогда, когда
Равновесное вложение в военную силу ψk,*(τ) возрастает в Т, если ∂V-k,c/∂T > ∂V-k,d /∂T. По теореме об огибающей
Сходным образом
Отсюда ∂V—k,c/∂T > ∂V—k,d/∂T тогда и только тогда, когда
Оцениваемая при Т = т правая сторона этого неравенства равна нулю, а левая сторона строго положительна. Таким образом, равновесная инвестиция в военную силу возрастает в Т = τ, т. е. ∂ψk,d(τ/∂T > 0, подразумевая, что ожидаемая кланами полезность не максимизируется при эффективном количестве привилегий.

