- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Флатландия. Сферландия - Эдвин Эбботт
Шрифт:
Интервал:
Закладка:
Наши прогнозы станут понятнее, если сначала мы скажем несколько слов о том, что составляет предмет геометрии и какова природа геометрических рассуждений. Геометрия не рассматривает материальные предметы, например нить или лист бумаги, а интересуется абстрактными линиями или поверхностями. Не рассматривает геометрия и реальные факторы. Она лишь показывает, какие утверждения были бы верными, если верны некоторые другие утверждения. Применяя ту или иную геометрическую теорему к нити или листу бумаги, мы прежде всего должны проверить, выполняются ли условия этой теоремы, и правильность полученного нами результата зависит от того, в какой мере выполнены условия теоремы.
Даже аксиомы геометрии, ранее считавшиеся самоочевидными истинами, ныне рассматриваются лишь как гипотезы. Математик отнюдь не утверждает, что аксиомы верны. Он строит систему утверждений, которые с необходимостью следуют из аксиом и содержатся в самих аксиомах, но оставляет за собой свободу менять аксиомы и, выбирая различные наборы аксиом, строит различные геометрии. Каждая геометрия с математической точки зрения верна, верна в том смысле, что представляет собой совокупность утверждений (теорем), с необходимостью следующих из того набора аксиом, который положен в ее основу. Необходимо, чтобы аксиомы, лежащие в основании геометрии, были непротиворечивыми, то есть чтобы одна аксиома не противоречила другой. Кроме того, аксиомы должны быть независимыми. Утверждение не следует принимать за аксиому, если оно следует из других аксиом. Наконец, система аксиом должна быть полной, то есть геометрия должна полностью определяться принятой системой аксиом без обращения к каким-либо дополнительным аксиомам.
Построив различные геометрии, мы затем останавливаем свой выбор на одной из них и применяем ее к реальности. Мы выбираем такую геометрию, аксиомы и теоремы которой лучше всего соответствуют условиям нашего существования, но этот выбор не является частью математического рассуждения. Он всецело определяется экспериментом и жизненным опытом.
Наконец, математик может пойти еще дальше и отказаться от явного определения объектов, рассматриваемый в его геометрии, их свойств и отношений. Математик может выбрать некоторые элементы, назвав их «точками» и «прямыми», и некоторые отношения, которые он называет отношениями «положения», «величины» или «принадлежности». Не определяя в явном виде элементы и отношения, математик предполагает, что элементы удовлетворяют отношениям. Утверждения о том, что выбранные элементы удовлетворяют отношениям, служат аксиомами. Из этих аксиом математик выводит другие отношения. Формулировки этих отношений служат теоремами.
Такова схема абстрактной геометрии. Используемые в ней термины лишены смысла независимо от того, являются ли они такими словами, как «точка», «прямая», «пересечение» и т. д., заимствованными из обычной геометрии, или новыми специально изобретенными словами. Разумеется, гораздо легче придать смысл всем терминам с самого начала и рассматривать геометрию в какой-либо конкретной форме, особенно если этой конкретной форме нетрудно придать наглядный смысл, но вполне возможно строить геометрию абстрактно и лишь, затем придавать конкретный смысл ее терминам. Изменяя смысл терминов, мы можем придавать одной и той же геометрии несколько интерпретаций, даже если геометрия первоначально была построена в конкретной форме.
Нарисованная нами картина геометрии позволяет легче воспринимать основные идеи геометрии четырех или большего числа измерений. Подготовленный читатель не встретит трудностей в принятии системы аксиом, включающей в себя гипотезу о том, что существуют точки, лежащие вне данного пространства трех измерений, коль скоро «точки» и «пространство» — слова, лишенные смысла. Трудность, с которой встретится, читатель при попытке наглядно представить себе такую или любую другую геометрию, возникнет лишь тогда, когда он попытается применить ее к нашему или воображаемому миру и при этом выяснится, что применение геометрии приводит к некоторым противоречиям или выходит за пределы накопленного опыта.
Мы уже говорили о том, что одна и та же геометрия может иметь несколько интерпретаций. Так, некоторую двумерную геометрию можно интерпретировать как сферическую геометрию, если под термином «прямая» понимать окружность большого круга. При надлежащем определении длины или расстояния нашу обычную геометрию можно интерпретировать как геометрию, в которой окружности, проходящие через некоторую фиксированную точку, считаются прямыми. Можно было бы привести и другие примеры. Абстрактная геометрия четырех измерений допускает интерпретацию как конкретную геометрию, если под словом «точка» понимать прямую в нашем привычном трехмерном пространстве. Чтобы однозначно определить положение прямой, необходимо задать четыре числа, и все отношения в геометрии четырех измерений можно интерпретировать как отношения между обычными прямыми в трехмерном пространстве и фигурами, образованными из этих прямых.
Но все эти интерпретации кажутся весьма искусственными, и сама абстрактная геометрия представляет интерес главным образом для тех немногих, даже среди математиков, специалистов, которые посвятили себя изучению геометрии. Например, геометрия прямых в трехмерном пространстве представляет интерес и ценность сама по себе, но нас сейчас она будет интересовать главным образом как наиболее естественная интерпретация геометрии четырех измерений, в которой точки означают точки, прямые — прямые линии, а отношения имеют тот же смысл, в котором мы привыкли понимать их в двумерной и трехмерной геометриях, согласующихся с нашим повседневным опытом. Даже если математик использует абстрактную геометрию в какой-либо другой области математики, он всегда стремится интерпретировать ее наиболее естественным образом.
Самыми важными из геометрий, развитых при помощи различных систем аксиом, являются две геометрии, известные под названием неевклидовых геометрий Эти геометрии достаточно полно изложены в приводимом ниже очерке «Неевклидова геометрия и четвертое измерение». Ни Лобачевский, ни Бойяи не использовали абстрактный подход к геометрии, намеченной нами выше, тем не менее, как выяснилось, открытая ими гиперболическая геометрия великолепно согласуется с нашим повседневным опытом, если мы ограничимся рассмотрением небольшой части плоскости или небольшой области пространства. То же самое можно сказать и относительно эллиптической геометрии. Мы не можем даже утверждать, что геометрия нашего пространства евклидова и не является ни гиперболической, ни эллиптической. Неевклидовы геометрии в случае двух измерений можно применять к некоторым кривым поверхностям в обычном пространстве (то есть пространстве с евклидовой геометрией), если под термином прямая понимать геодезическую, или кратчайшую, линию. Иногда это утверждение принимают за объяснение неевклидовой геометрии и предполагают, что плоскость в неевклидовой геометрии не является плоскостью, а прямая — прямой.
Так же, как в обычном трехмерном евклидовом пространстве можно найти кривые поверхности, к которым применимы неевклидовы геометрии двух измерений, в четырехмерном пространстве можно указать искривленные трехмерные пространства, или гиперповерхности, к которым применимы трехмерные неевклидовы геометрии. Некоторые склонны усматривать в этом дополнительное объяснение неевклидовых геометрий, ошибочно полагая, будто наше пространство является одним из таких искривленных пространств в пространстве четырех измерений. Некоторые даже считают, что геометрия четырех измерений была специально создана для объяснения неевклидовых геометрий. Сами по себе неевклидовы геометрии не исходят из

