- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Концепции современного естествознания: Шпаргалка - Коллектив авторов
Шрифт:
Интервал:
Закладка:
излучается, но и распространяется и поглощается также квантами. Частицы света, энергия которых квантована, позднее были названы фотонами.
Следовательно, свет, с одной стороны, проявляет волновые свойства (интерференция и дифракция), а с другой – корпускулярные (излучение, фотоэффект и др.), т. е. существует корпускулярно-волновой дуализм природы света.
27. ИНТЕРФЕРЕНЦИЯ СВЕТА
Явление наложения волн с образованием устойчивой картины максимумов и минимумов называется интерференцией света.
Первый демонстрационный эксперимент по наблюдению интерференции света был поставлен в 1802 году английским физиком Т. Юнгом (1773–1829). Опыт Юнга выполняется следующим образом. Сначала свет направляется на непрозрачную преграду П1 с узкой щелью (рис. 1), затем свет, прошедший через эту щель, падает на вторую непрозрачную преграду П2 уже с двумя узкими, близко расположенными щелями, которые фактически являются источниками света с высокой степенью когерентности. Свет от этих двух щелей попадает на экран Э, на котором и наблюдается интерференционная картина, состоящая из чередующихся полос различной интенсивности.
Максимумы интенсивности находятся в тех областях экрана, для которых оптическая разность хода кратна целому числу длин волн, а именно Δ = S2 – S1 = ± mλ, где S1 и S2 – оптический путь первой и второй волны соответственно, λ – длина волны света, m = 0, 1, 2, 3, … Это означает, что колебания векторов напряженности электрического поля в данной области экрана синфазны и, следовательно, интенсивность света будет иметь максимальное значение.
Минимумы интенсивности имеются там, где оптическая разность хода кратна полуцелому числу длин волн, т. е. Δ = ±(m + 1/2)λ. В этом случае колебания векторов напряженности электрического поля происходят в противофазе и волны гасят друг друга.
Рис. 1. Схематическое изображение установки для проведения опыта Юнга по интерференции света и распределение интенсивности света I на экране
28. ДИФРАКЦИЯ СВЕТА
Дифракцией называется совокупность явлений, наблюдаемых в среде с резкими неоднородностями (границы непрозрачных или прозрачных тел) и связанных с отклонениями от законов геометрической оптики. Дифракция, в частности, приводит к огибанию световыми волнами препятствий и проникновению света в область геометрической тени.
Наблюдение дифракции осуществляется обычно по следующей схеме. На пути световой волны, распространяющейся от некоторого источника, помещается непрозрачная преграда, закрывающая часть волновой поверхности световой волны. За преградой располагается экран, на котором при определенных условиях возникает дифракционная картина. Рассмотрим в качестве примера дифракцию от щели, когда волновая поверхность ограничена двумя полуплоскостями, расположенными на расстоянии b друг от друга.
Если экран располагается близко от щели, то, как показывает опыт и теоретические расчеты, при выполнении условия b2/(/λ) >> 1 (/ – расстояние от щели до экрана; λ – длина волны света) на экране будет наблюдаться четкое изображение щели, т. е. в этом случае будет выполняться закон прямолинейного распространения света. При увеличении расстояния от щели до экрана, когда начинает выполняться условие b2/(/ λ) ~ 1, граница света и тени на изображении щели становится размытой, а распределение интенсивности света в центральной части изображения щели становится неоднородным – появляются минимумы и максимумы интенсивности. Это означает, что дифракция света начинает играть существенную роль
и законы геометрической оптики перестают работать. Дифракция света, имеющая место при выполнении указанного условия, носит название дифракции Френеля.
При дальнейшем увеличении /, когда начинает выполняться условие b2/(/λ) << 1, в каждую точку на экране приходят почти параллельные лучи от волновой поверхности в области щели и дифракционная картина приобретает иной вид: она имеет четко выраженную систему максимумов и минимумов, глубоко заходящих в область геометрической тени. Дифракцию, возникающую при этом условии, называют дифракцией Фраунгофера.
29. КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ СВЕТА
Изучение явлений интерференции, дифракции, поляризации электромагнитных волн (упорядочения колебаний векторов напряженностей электрического и магнитного полей) и дисперсии света (круга явлений, в которых важную роль играет зависимость показателя преломления среды от длины волны) привело, как это могло показаться, к окончательному утверждению волновой теории света. Однако при исследовании теплового излучения энергии нагретыми телами, фотоэлектрического эффекта (испускания электронов веществом под действием электромагнитного излучения), рассеяния рентгеновского излучения веществом было установлено, что объяснить эти явления в рамках электромагнитной теории Максвелла не удается.
Разрешить эти противоречия удалось благодаря смелой гипотезе, высказанной в 1900 году немецким физиком М. Планком, согласно которой излучение света происходит не непрерывно, а дискретно, т. е. определенными порциями (квантами), энергия которых определяется частотой v:
ε = hν, (1)
где е – энергия кванта; h = 6,63 10-34 Дж • с – постоянная Планка (квант действия), являющаяся одной из универсальных постоянных в физике.
Развивая идею Планка, Эйнштейн в 1905 году выдвинул гипотезу о том, что свет не только излучается квантами, но распространяется и поглощается квантами, и на ее основе объяснил фотоэффект. С квантами света стали ассоциировать реальные элементарные частицы, которые были названы в 1929 году американским физико-химиком Г. Льюисом (1875–1946) фотонами. Фотон является особой частицей, так как в отличие от других частиц (электронов, протонов и т. п.) он существует только в движении, причем скорость его движения равна скорости света. Масса фотона равна нулю. Энергия фотонов определяется формулой Планка (1), а импульс
p = h/λ, (2)
где p – импульс фотона; λ – длина волны.
Исследуя процессы излучения, Эйнштейн в 1909 году установил, что свет одновременно обладает и корпускулярными, и волновыми свойствами, т. е. свету фактически присущ корпускулярно-волновой дуализм (двойственность), который нельзя объяснить с позиций классической физики. Таким образом, можно сказать, что свет представляет собой единство противоположных свойств – корпускулярного (квантового) и волнового (электромагнитного), дискретного и непрерывного. К корпускулярным параметрам, характеризующим свет, относятся энергия и импульс, а к волновым – частота и длина волны. Корпускулярные и волновые параметры связаны между собой через соотношения (1) и (2).
30. ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ БОРА
В 1927 году Бор сформулировал принципиальное положение квантовой механики – принцип дополнительности, согласно которому получение экспериментальной информации об одних физических величинах, описывающих микрообъект (элементарную частицу, атом, молекулу), неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым. Такими взаимно дополнительными величинами являются, например, координата частицы и ее импульс (или скорость), потенциальная и кинетическая энергии и др.
Рассмотрим простой пример, который хорошо иллюстрирует принцип дополнительности. Бор обратил внимание на очень простой и понятный факт: координату и импульс микрочастицы нельзя измерить не только одновременно, но и с помощью одного и того же прибора. В самом деле, чтобы измерить импульс микрочастицы и при этом не очень сильно его изменить, необходим очень легкий подвижный прибор. Но именно эта подвижность приводит к тому, что при попадании в такой прибор микрочастицы его положение будет весьма неопределенно. Для измерения координаты мы должны взять другой, очень массивный прибор, который не сдвинется с места при попадании в него микрочастицы. Но в этом случае произойдет изменение импульса микрочастицы, которое прибор даже не заметит. Это простейшая экспериментальная иллюстрация к соотношению неопределенностей Гейзенберга: нельзя в одном и том же опыте определить обе характеристики микрообъекта – координату и импульс. Для этого необходимы два измерения и два принципиально разных прибора, свойства которых дополняют друг друга.
В соответствии с принципом дополнительности волновое и корпускулярное описания микропроцессов не исключают и не заменяют, а дополняют друг друга. Для формирования представления о микрообъекте необходим синтез этих двух описаний.
Квантовый объект – это не частица и не волна, и даже не то и другое одновременно. Квантовый объект – это нечто третье, не равное простой сумме свойств волны и частицы (точно так же, как мелодия – больше, чем сумма составляющих ее звуков). Это квантовое «нечто» не дано нам в ощущение, тем не менее оно, безусловно, реально. У нас нет органов чувств, чтобы вполне представить себе свойства этой реальности. Однако сила нашего интеллекта, опираясь на опыт, позволяет все-таки ее познать.

