- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Большое, малое и человеческий разум - Роджер Пенроуз
Шрифт:
Интервал:
Закладка:
Сказанное возвращает нас к началу книги и рис. 1.3, связывающему мир математики с миром физических явлений. В общей теории относительности мы сталкиваемся со структурой, которая реально определяет с исключительной точностью поведение физического мира. При этом теория, описывающая фундаментальные свойства нашего мира, была получена вовсе не в результате длительных наблюдений за поведением Природы (разумеется, сказанное не означает, что я отрицаю очевидную ценность таких наблюдений). Конечно, основным критерием научной теории является не убедительность доводов, а соответствие фактам. В данном случае мы имеем дело именно с теорией, которая прекрасно согласуется с экспериментальными данными. Точность теории относительности по крайней мере вдвое (как математик я подразумеваю под точностью число знаков после запятой при надежном расчете) выше точности классической механики, т.е. ее расчеты справедливы до 10-14 , в то время как точность ньютоновской механики составляет лишь 10-7. Такое «возрастание» точности наблюдалось в классической механике за период от семнадцатого века (Ньютон знал, что точность его расчетов составляет 10-3) до наших дней (она доведена, как я уже говорил, до10-7).
Разумеется, гипотеза Эйнштейна представляет собой некую физическую теорию, и для нас очень важно установить ее связь со структурой реального мира. Я обещал, что не буду вдаваться в подробности и делать изложение «ботаническим», однако в данном случае речь идет о теории единственной известной нам Вселенной (как о целостном объекте), так что я могу углубиться в рассуждения, не опасаясь обвинений в излишней болтливости. Теория Эйнштейна предлагает нам три типа стандартной модели развития мира (рис. 1.16) в зависимости от того, какова величина одного из главных параметров теории, обозначенного буквой k. В различных работах по космологии часто используется так называемая космологическая постоянная, но я не буду ее упоминать, поскольку сам Эйнштейн считал своей основной ошибкой именно введение этой постоянной в уравнения общей теории относительности. Если же жизнь когда-нибудь заставит физиков вернуться к этой постоянной, нам придется это вытерпеть.
Рис. 1.16.
а — пространственно-временная картина расширяющейся Вселенной с евклидовыми пространственными сечениями (на рисунке указаны лишь два измерения), k = 0; б — пространственно-временная картина расширяющейся (а затем сжимающейся) Вселенной со сферическими пространственными сечениями, k = +1; в — пространственно-временная картина расширяющейся Вселенной с пространственными сечениями, описываемыми геометрией Лобачевского, k = -1; г — динамика развития трех указанных типов модели Фридмана.
Полагая космологическую постоянную равной нулю, мы получаем для трех различных значений параметра k (k = +1, 0, -1) три различные модели Вселенной (см. рис. 1.16). Разумеется, было бы правильнее учитывать также возраст и масштаб Вселенной (для этого необходимо пользоваться непрерывным, а не дискретным параметром k), однако мы ограничимся лишь этими тремя моделями, поскольку их можно легко связать с кривизной пространственных сечений Вселенной. Если сечения являются плоскими, то этому соответствует нулевая кривизна и значение параметра k = 0 (рис. 1.16, а). Если же сечения имеют положительную кривизну, то Вселенная является замкнутой и, следовательно, k = +1 (рис. 1.16, б). В этих моделях Вселенная имеет сингулярное исходное состояние, знаменующее ее рождение (знаменитый Большой Взрыв). При k = +1 Вселенная после рождения расширяется (иногда говорят «раздувается») до некоторого максимального размера, после чего начинает сжиматься и «схлопывается» в момент Большого Сжатия. При k = -1 расширение Вселенной будет продолжаться вечно (рис. 1.16, в), а случай k = 0 является промежуточным между двумя указанными. На рис. 1.16, г схематически показана зависимость радиуса Вселенной от времени, где под радиусом понимается некий характерный размер. Он может быть задан лишь при k = +1, а в двух остальных случаях Вселенная просто бесконечно расширяется.
Мне хочется подробнее рассмотреть случай с k = -1 (который, кстати сказать, труднее всего согласовать с общей картиной), представляющий интерес по двум важным причинам. Во-первых, эта модель наиболее удобна, если вы хотите трактовать результаты наблюдений по их истинному, «номинальному» значению. Дело в том, что в общей теории относительности искривление пространства обусловлено суммарным количеством вещества во Вселенной, а этого количества, по современным данным, явно недостаточно для создания Вселенной с замкнутой геометрией (разумеется, может оказаться и так, что Вселенная содержит большое количество так называемой скрытой, или темной, массы, которую мы еще просто не успели обнаружить, и тогда будет справедлива какая-то другая модель, однако, скорее всего, наша Вселенная не имеет столь большой массы и описывается параметром k = -1). Вторая причина моего интереса к этой модели связана с ее исключительной красотой и элегантностью.
На что похожи вселенные с параметром k = -1? Их пространственные сечения описываются так называемой гиперболической геометрией (геометрией Лобачевского), прекрасной иллюстрацией которой может служить одна из картин Мориса Эшера (рис. 1.17). Эшер нарисовал целую серию гравюр, озаглавленную «Предельные окружности», одна из которых и показана на рисунке. Как вы видите, художнику представляется, что Вселенная полна ангелов и чертей! Для нашего рассмотрения гораздо важнее то, что вся картина как бы выгнута по отношению к краям предельной окружности, и это искривление связано именно с попыткой художника изобразить гиперболическое пространство на плоском листе бумаги, иными словами — в привычном евклидовом пространстве. Следует осознать, что если бы мы жили в этой Вселенной, то форма и размеры всех чертей были бы одинаковы независимо от того, попали бы мы в центр или на край картины. Гравюра дает некоторое представление о том, что происходит в пространстве Лобачевского, и о тех особенностях, которые возникают при соответствующем искажении пространства.
Рис. 1.17. М. Эшер. «Предельная окружность 4» (представление геометрии Лобачевского).
Геометрия Лобачевского может показаться странной и неожиданной, но если вдуматься, то привычная нам евклидова геометрия — тоже совершенно замечательная вещь, хотя бы потому, что она дает нам прекрасные образцы взаимодействия физики и математики. Когда-то древние греки рассматривали ее не как раздел математики, а как описание окружающего мира.
Геометрия действительно описывает мир с поразительной точностью. Я говорю об очень высокой, но не абсолютной точности, поскольку, как мы уже видели, теория Эйнштейна доказала позднее, что наш мир в определенных условиях может быть «искривлен». Вопрос о возможности существования других геометрий всегда волновал ученых. Эта очень старая проблема известна под названием пятого постулата Евклида и сводится к справедливости утверждения о том, что через точку на плоскости, лежащую вне заданной прямой, можно провести только одну прямую, параллельную данной. Долгое время считалось, что это утверждение можно доказать, используя другие, более очевидные теоремы и положения евклидовой геометрии, однако позднее выяснилось, что такое доказательство невозможно, вследствие чего и возникло представление о неевклидовой геометрии.
В такой геометрии сумма углов треугольника не равна 180°. На первый взгляд кажется, что это условие значительно усложняет рассмотрение, поскольку мы привыкли к тому, что в евклидовой геометрии сумма углов любого треугольника всегда составляет именно 180° (рис. 1.18, а). Однако в неевклидовой геометрии разность между суммой углов треугольника и 180° пропорциональна площади треугольника, т. е. неожиданно выясняется, что площадь треугольника сложнее описать именно в евклидовой геометрии, где она задается сложным уравнением для всех углов и длин сторон треугольника. В неевклидовой геометрии площадь треугольника определяется замечательно простой формулой Ламберта (рис. 1.18, б). Поразительно, но Ламберт вывел свою формулу до открытия неевклидовой геометрии!
Рис. 1.18.
а — треугольник в евклидовом пространстве; б — треугольник в пространстве Лобачевского.
Очень важную роль в геометрии играют так называемые действительные (вещественные) числа, абсолютно необходимые для построений евклидовой геометрии. Такие числа ввел древнегреческий математик Евдокс в 4 веке до н.э., и они до сих пор сохраняют свое значение для создания физической картины мира. Позднее мы будем говорить и о комплексных числах, но последние также основаны на представлении о вещественных числах.

