- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Если бы числа могли говорить. Гаусс. Теория чисел - Antonio Lizana
Шрифт:
Интервал:
Закладка:
Греки нашли решение для пятиугольника, но общую проблему это не устранило, поскольку не был найден метод построения многоугольника с семью сторонами (а также других многоугольников с количеством сторон меньше 20). Более того, даже не было известно, существуют ли такие методы. Гаусс заинтересовался проблемой и нашел метод построения 17-угольника. Много лет спустя он будет вспоминать этот момент в письме Герлингу от 6 января 1819 года:
«Это произошло 29 марта 1796 года, во время каникул в Брауншвейге, и это абсолютно не было случайным, поскольку это был плод усиленных размышлений; утром этого дня, еще не встав с кровати, я увидел очень четко всю эту связь, так что я тут же применил к 17-угольнику соответствующее числовое утверждение».
Именно это открытие окончательно убедило юношу в том, что он должен посвятить себя математике. Кроме того, Гаусс включил этот результат в раздел VII «Арифметических исследований», о которых мы поговорим далее. Возможно, именно из-за того большого значения, которое открытие сыграло в жизни математика, он попросил выгравировать 17-угольник на своей могиле. К сожалению, каменщик, которому это поручили, не справился с работой и в итоге выгравировал 17-конечную звезду. На нынешней могиле Гаусса 17-угольника также нет.
Гаусс не только нашел способ построения 17-угольника, но и попытался ответить на основной вопрос: возможно ли построение любого правильного многоугольника с помощью линейки и циркуля. Эта задача тесно связана с проблемой деления окружности, которая также занимала Гаусса и рассматривая которую он получил некоторые результаты. В 1801 году ученый доказал, что правильный многоугольник с п сторонами можно построить с помощью линейки и циркуля, пользуясь так называемыми простыми числами Ферма (или числами Ферма).
ПЬЕР ДЕ ФЕРМАФерма (1601-1665) — французский юрист и математик, которого Белл назвал королем математиков-любителей. Этим прозвищем Ферма обязан тому, что никогда не посвящал себя исключительно данной науке, которую считал скорее хобби, однако именно Ферма, наряду с Рене Декартом (1596-1650), был одним из основных математиков первой половины XVII века. Он внес значительный вклад в теорию чисел, которой начал интересоваться после прочтения «Арифметики» Диофанта. На полях одной из страниц именно этого произведения он записал знаменитую теорему, ставшую известной как «последняя теорема Ферма», что не совсем правильно, поскольку речь идет только о гипотезе. В этой гипотезе утверждалось, что не существует таких целых чисел х, у, z, что можно было бы составить уравнение хn + уn = zn при n >= 3. Очевидно, что для n = 2 это действительно возможно, достаточно взять З² + 4² = 5². Гаусс никогда не занимался последней теоремой Ферма, и на это были свои причины. В 1816 году Парижская академия предложила премию за доказательство (или опровержение) гипотезы Ферма. Ольберс, немецкий астроном, друг Гаусса, уговаривал математика поучаствовать в конкурсе («Мне кажется справедливым, дорогой Гаусс, чтобы Вы занялись этим»), но ученый устоял перед искушением. Ответ математик дал лишь два месяца спустя, и в нем он изложил свое мнение о последней теореме Ферма. «Я очень благодарен Вам за новости относительно Парижской премии, но признаю, что теорема Ферма в изолированном виде представляет очень небольшой интерес для меня, поскольку я легко могу найти множество подобных утверждений, которые невозможно ни доказать, ни опровергнуть». Знаменитое высказывание Ферма было полностью доказано только в 1995 году британским ученым Эндрю Уайлсом.
Числа Ферма, названные так в честь Пьера де Ферма — первого, кто их изучал, — имеют следующий вид:
Fn = 2²n+1,
где n — натуральное число.
Ферма определил такие простые числа с намерением, очень далеким от того, чтобы решать задачи построения многоугольников с помощью линейки и циркуля (а на самом деле удалось доказать, что не все числа такого вида простые).
Гаусс показал, что для построения правильного многоугольника с n сторонами с помощью линейки и циркуля необходимо, чтобы нечетные простые множители n были различными простыми числами Ферма. То есть правильный многоугольник можно построить, если число его сторон — это степень числа 2, простое число Ферма или произведение некоторой степени числа 2 (включая единицу) и различных простых чисел Ферма. Это то, что в математике известно как достаточное условие. Итак, если многоугольник имеет форму, определенную Гауссом, его можно построить. Естественным образом возникает вопрос, является ли это также необходимым условием. То есть нужно проверить, только ли такие многоугольники можно построить с помощью линейки и циркуля.
Пьер Ванцель, французский математик, в 1837 году доказал, что условие Гаусса является необходимым, и это превратило теорему в полное описание правильных многоугольников, которые можно построить с помощью линейки и циркуля. Математики называют такие условия тогда и только тогда. То есть у нас полностью определены правильные многоугольники, которые мы можем построить с помощью линейки и циркуля. Так, треугольник (3 = 2²0 +1), квадрат (4 = 2²1 ), пятиугольник (5 = 2²1 +1) и шестиугольник (6 = 2-(2²0 +1)) можно построить с помощью линейки и циркуля, а правильный семиугольник (7 =/= 2²n + 1 Vn) нельзя. Далее, правильный восьмиугольник (8 = 2³) можно построить, а правильный девятиугольник (9 = 3² =/= 2²n +1 Vn) — нет· Очевидно, что многоугольник с 17 сторонами, построенный Гауссом, — это пример многоугольников, в которых число сторон точно совпадает с одним из чисел Ферма, так как F2 = 2²2 +1 = 17.
Но это не означает, что нет людей, которые посвящали бы свое время и энергию безуспешному нахождению способов построения семиугольников или других фигур, что, как доказано математиками, невозможно осуществить с помощью линейки и циркуля. Это касается квадратуры круга, трисекции угла или удвоения куба. Первой задачей со страстью, которая сохранилась всю жизнь, занимался не кто иной, как Наполеон. Однако эту битву, в отличие от битв с прусской армией, Наполеон не смог, да и не мог бы выиграть.
ГЛАВА 2 «Арифметические исследования»
Гаусс — отец теории чисел в ее современном понимании. Среди других его достижений — решительный импульс в использовании комплексных чисел, благодаря чему он оставил нам инструмент, с помощью которого можно подойти к решению полиномиальных уравнений любого типа. Этой теме посвящена работа «Арифметические исследования», в которой Гаусс собрал свои многочисленные исследования, совершенные в молодые годы.
Гаусс привел математику XIX века к целям, о которых до него и не подозревали. Первым огромным вкладом ученого в алгебру была докторская диссертация, которую, как мы уже знаем, он защитил заочно в 1799 году в Хельмштедтском университете. Руководителем работы был Иоганн Фридрих Пфафф (1765-1825), один из великих математиков того времени, и он всегда относился с особым вниманием к своему подопечному. Пфафф считал своим долгом заботиться о том, чтобы его молодой друг больше двигался, и они часто гуляли днем, разговаривая о математике. Поскольку Гаусс отличался не только скромностью, но и некоторой замкнутостью, возможно, Пфафф не смог разглядеть все черты его натуры, однако известно, что сам молодой диссертант восхищался своим преподавателем, которого считал лучшим математиком Германии — благодаря не только отличным научным работам, но и простому и открытому характеру. Со временем ученик превзойдет учителя. Барон Александр фон Гумбольдт (1769-1859), знаменитый путешественник и любитель наук, с которым Гаусс сотрудничал, изучая геомагнетизм, спросил Пьера-Симона Лапласа (1749-1827), одного из выдающихся французских математиков, кого тот считает самым великим математиком в Германии. Лаплас ответил: «Пфаффа». «А Гаусс?» — удивился фон Гумбольдт, который поддерживал кандидатуру Карла Фридриха на пост директора Гёттингенской обсерватории. «О, — сказал Лаплас, — Гаусс — самый великий в мире».
Название докторской диссертации Гаусса звучит так: Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse («Новое доказательство теоремы, в которой говорится, что любая алгебраическая рациональная функция может быть разложена на множители первой или второй степени с действительными коэффициентами»). В этом заголовке содержится небольшая ошибка, которая принесла молодому Гауссу еще больше величия: это доказательство было не «новым», а первым в истории полным доказательством основной теоремы алгебры.
Математика — царица наук, а арифметика — царица математики.
Карл Фридрих Гаусс

