- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Если бы числа могли говорить. Гаусс. Теория чисел - Antonio Lizana
Шрифт:
Интервал:
Закладка:
Раздел VII — самая известная часть «Исследований», оказавшая огромное влияние на развитие науки. В этом разделе шла речь о делении круга с помощью линейки и циркуля — классической теме математики. Очевидно, что эта задача связана с построением правильных многоугольников, так что Гаусс включил сюда свое знаменитое построение многоугольника с 17 сторонами, найдя достаточное условие для построения правильного многоугольника с помощью линейки и циркуля.
В мире математики все признают, что «Арифметические исследования» — это не просто сборник замечаний о числах. Работа знаменует собой рождение теории чисел как независимой дисциплины. Ее публикация сделала теорию чисел царицей математики — это определение очень нравилось Гауссу. И все же, несмотря на это, труд был не слишком тепло принят Парижской академией наук, которая сочла его темным и неясным. Одна из причин такого впечатления состоит в том, что Гаусс старался сохранять тайну, исключая или скрывая пути, которые привели его к открытиям. Как и следовало ожидать, математики не до конца поняли новую работу и назвали труд «книгой за семью печатями». Ее сложно читать даже специалистам, но содержащиеся в ней сокровища, включая скрытые в лаконичных синтетических доказательствах, сегодня доступны каждому, кто захочет восхититься ими, в основном благодаря работам Дирихле, который первым разбил эти семь печатей.
Рассказывают, что Дирихле использовал книгу Гаусса как подушку, чтобы ночью некоторые знания перетекли в его голову.
Лагранж также безоговорочно хвалил книгу. В своем письме Гауссу от 31 мая 1804 года он признается:
«Ваши «Исследования» быстро возвели Вас до уровня первых математиков, и я считаю, что последний раздел содержит самое красивое аналитическое открытие, которое только было сделано за последнее время [...]. Я думаю, что никто более искренне не аплодирует Вашим достижениям, чем я».
Если вспомнить, что все изложенные в книге результаты были получены Гауссом в возрасте до 30 лет, остается только удивляться его таланту. Очень вероятно, что именно в память о Гауссе Филдсовская премия — важнейшая награда, которую может получить математик, — вручается только ученым до 40 лет. В отличие от Нобелевской премии, которая обычно вручается ученым, приближающимся к концу карьеры, медали Филдса оставлены для молодых.
СЕМЕЙНАЯ ЖИЗНЬВ конце 1798 года ученый вернулся в Брауншвейг, где жил до 1807 года. Очевидно, что этот период был критическим для его карьеры. Сначала Гаусс, закончив обучение в Гёттингенском университете, боялся потерять расположение герцога, но в январе 1799 года математик рассказывал Вольфгангу Бойяи, что герцог продолжает выплачивать стипендию, и это позволяет ему жить, посвящая себя исследованиям. Очевидно, что в это время Гаусс был вполне удовлетворен своим математическим прогрессом и с избытком оправдывал ожидания, возложенные на него: он не только блестяще завершил обучение в Гёттингенском университете, но и решил проблему построения правильного многоугольника с 17 сторонами. Во время этого второго периода в Брауншвейге можно заметить расширение научных интересов Гаусса; он впервые посвятил себя вопросам математики, специфически применимым к теоретической и практической астрономии.
ИОГАНН ПЕТЕР ГУСТАВ ЛЕЖЁН ДИРИХЛЕДирихле (1805-1859) — немецкий математик XIX века. Он получил образование в Германии, а затем во Франции, где учился у многих самых известных математиков своего времени, таких как Фурье. После выпуска работал преподавателем в университетах Бреслау (1826-1828),
Берлина (1828-1855) и Гёттингена, где получил кафедру, оставленную Гауссом после его смерти. Многие свои работы Дирихле посвятил тому, чтобы дополнить труд Гаусса, приводя полные доказательства его результатов, чтобы они стали более доступными будущим поколениям математиков. Его самый значительный вклад сделан в теорию чисел, где он уделил особое внимание изучению рядов и развил теорию рядов Фурье. Первая публикация ученого включала в себя частичное доказательство теоремы Ферма для случая n = 5, которое также нашел Адриен Мари Лежандр, один из рецензентов. Дирихле нашел свое доказательство почти одновременно с Лежандром, а потом успешно продолжил его для п = 14. Математик применил аналитические функции к вычислению арифметических задач и установил критерии сходимости рядов. В области математического анализа он усовершенствовал определение и понятие функции. Дирихле приписывают современное понимание функции в математике.
Его личная жизнь в это время также изменилась, поскольку здесь Гаусс начал ухаживать за Иоганной Осггоф, на которой и женился в 1805 году. Дочь кожевника, Иоганна была на три года младше Гаусса, ее семья хорошо знала мать математика, которая работала на семью Остгофов. В детстве Карл Фридрих сам часто бывал в доме родственников своей будущей жены и после возвращения в Брауншвейг возобновил общение с ними. Так он познакомился с Иоганной.
НОБЕЛЕВСКИЕ ПРЕМИИ ПО МАТЕМАТИКЕФилдсовская премия — это высший знак отличия, который может получить математик. Она вручается Международным математическим союзом раз в четыре года и по значимости сопоставима с Нобелевской премией. Дело в том, что Нобелевской премии по математике не существует. Альфред Нобель исключил эту дисциплину из списка наук, за которые присуждается премия его имени. И хотя Нобелевский фонд имеет полномочия включать в список новые области (например, существует Нобелевская премия по экономике, учрежденная в 1969 году), он не может учредить премию по математике. Возможно, воля Нобеля связана с тем, что он не считал математику прикладной наукой. Однако существуют и другие объяснения: якобы это связано с обидой, которую учредитель премий испытывал к математическому сообществу, поскольку его супруга изменила ему со шведским математиком Густавом Миттаг-Леффлером (1846-1927). Эта версия очень распространена, но вряд ли она имеет под собой реальные основания, прежде всего потому, что Нобель никогда не был женат. Первая медаль Филдса была вручена в 1936 году, но из-за начала Второй мировой войны следующее награждение состоялось только в 1950 году. Официальное название премии — Международная медаль за выдающиеся открытия в математике (хотя она намного более известна как медаль Филдса). Награда названа так в честь математика Джона Чарльза Филдса (1863- 1932), который развил эту идею.
Только молодымГлавная особенность этой награды — требование, чтобы лауреат-математик был не старше 40 лет. Вручение происходит раз в четыре года. К медали прилагается денежная премия в размере около 10 тысяч евро, и это очень далеко от сумм Нобелевской премии. Лауреатов математической награды может быть до четырех, но так бывает очень редко. Медаль изготовлена из золота, ее эскиз был разработан Робертом Маккензи в 1933 году. На аверсе выгравирована голова древнегреческого математика Архимеда и надпись Transire suum pectus mundoque potiri («Превзойти человеческую ограниченность и покорить Вселенную»). На реверсе можно увидеть шар, вписанный в цилиндр, и надпись Congregati ex toto orbe mathematici ob scrita insignia tribuere («Математики, собравшиеся со всего света, вручили эту награду за выдающиеся труды»).
Нам мало что известно о жизни пары, поскольку Гаусс упоминает супругу только в письмах друзьям. Не осталось даже ее портрета, известно лишь, что дочь математика, Минна, была очень похожа на мать. В 1806 году в письме Вольфгангу Бойяи Гаусс описывает свою супругу как умную и нежную женщину, но получившую довольно скудное образование.
У четы Гауссов родилось двое детей: Иосиф и Минна, и ничто не нарушало их идиллию. Однако в конце 1809 года, менее чем через два года после переезда в Гёттинген, где Гаусс занял пост директора обсерватории, Иоганна родила третьего ребенка и через месяц после родов умерла. Мальчик — бедный Луи, как называл его отец, — через несколько месяцев последовал за своей матерью, и безутешный Гаусс погрузился в депрессию. Ученый был довольно счастлив в первом браке; за год до смерти Иоганны он так описывал свою семейную жизнь в письме к Бойяи:
«Дни счастливо бегут однообразным ходом нашей домашней жизни: когда у девочки вылезает новый зуб или мальчик выучивает новые слова, это важнее, чем открытие новой звезды или новой математической истины».
Гаусс был не очень практичным человеком и в положении вдовца столкнулся с рядом бытовых проблем. Так что через несколько месяцев после смерти Луи он заключил брак с Вильгельминой (Минной) Вальдек, дочерью преподавателя права в университете. Минна Вальдек была подругой Иоганны Гаусс, но насколько тесной была эта дружба, неизвестно. Гаусс сделал Минне предложение через некоторое время после того, как она по неизвестным причинам расторгла свой брак. Свадьба состоялась довольно быстро, но семейная жизнь не была безоблачной. Супруги не испытывали друг к другу особой привязанности, и этот союз скорее был продиктован желанием Гаусса забыть о смерти Иоганны и подыскать для детей новую мать. Этот скоропалительный второй брак не очень нравился самому математику, который чувствовал себя неловко. Дошедшие до нас письма, которыми обменивались супруги, довольно холодны и безэмоциональны.

