- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Под знаком кванта. - Леонид Иванович Пономарёв
Шрифт:
Интервал:
Закладка:
С появлением этой схемы у всех радиохимиков наступило то мгновенное чувство облегчения, которое возникает на перевале после длительного восхождения. И точно так же сразу
стало видно далеко по обе стороны перевала: стали понятны прежние ошибки и ясен дальнейший путь. Прежде всего, теперь исчезли все таинственные элементы — многолетний кошмар химиков (их тогдашние названия приведены снизу истинных символов элементов): уран Х1 (открыт Круксом в 1900 г.), уран X2 (Фаянс и Геринг, 1913 г.), уран II (Гейгер и Неттол, 1912 г.), ионий (Болтвуд, 1907 г.), радий А, В, С,..., G (Резерфорд, 1904 г.),— многие из них оказались хорошо знакомыми химическими элементами: торием, висмутом, свинцом и т. д.
В цепочке превращений, представленной на схеме, присутствуют два урана, два висмута, три полония и три свинца, причем лишь последний из них 20682Pb стабилен. Поражает разнообразие периодов полураспада радиоэлементов: от 4,5 млрд. лет у 23892U до 1,6·10-4 с у 21484Po. Причина такого разнообразия выяснится только через 15 лет после открытия этой схемы и через 3 года после создания квантовой механики.
Теперь стало ясно также, что в любом минерале урана присутствуют одновременно все продукты его распада, то есть все 15 элементов радиоактивного семейства. Не случайно поэтому, что радий (Ra) и полоний (Po) супруги Кюри открыли именно в урановой смолке. Более того, легко видеть, что, выделив из урановой смолки фракцию висмута, они наблюдали в ней излучение по крайней мере двух изотопов полония с атомными массами 214 и 210.
Все элементы радиоактивного семейства находятся в состоянии радиоактивного равновесия, то есть каждую секунду числа образовавшихся и распавшихся атомов каждого элемента равны между собой. Интуитивно ясно, что чем короче период полураспада элемента, тем меньше его атомов находится в смеси. Строгий расчет подтверждает это заключение и приводит к выводу, что отношение концентраций любых двух элементов радиоактивного семейства в их стационарной смеси равно отношению их периодов полураспада. Например, концентрация радия по отношению к урану равна
(1,6∙103 лет)/(4,5∙109 лет) =0,36∙10-6,
то есть в 1 т урана следует ожидать всего 0,36 г радия — как раз примерно столько, сколько удалось выделить Марии Кюри.
Когда и как образовался уран — об этом мы узнаем немного позднее. Но раз образовавшись, он живет и умирает по законам, которые нам теперь хорошо известны. В каком-то смысле уран даже более удивителен, чем радий. Его период полураспада огромен: 4,5 млрд. лет. Свидетель и современник рождения нашей планеты, он сохраняет в своих недрах и радий, и полоний, и еще десяток других радиоэлементов, которые без него давно бы исчезли на Земле. Ежечасно и ежесекундно он порождает их вновь и вновь — подобно древнему богу неба Урану, исторгавшему из своего чрева титанов и циклопов.
Прежде чем 23892U превратится в 20682Pb, должно произойти 8 α-распадов и 6 β-распадов с разными скоростями и различной энергией излучаемых частиц, причем каждый β-распад сопровождается также излучением γ-кванта. Вот всю эту смесь и наблюдал Беккерель в своем первом опыте! Даже сегодня удивительно, что ее удалось разложить на составные части. Наверное, нечто подобное испытывал Левенгук, глядя на каплю простой воды в микроскоп.
При виде схемы превращений 23892U трудно удержаться от мыслей об эволюции элементов, и это — не случайная ассоциация. Резерфорд с юношеских лет находился под влиянием идей известного английского астрофизика Нормана Локьера, который последовательно отстаивал мысль о «неорганической эволюции» элементов, то есть о возможности их превращения друг в друга в недрах звезд. Быть может, поэтому именно Резерфорд стал автором гипотезы радиоактивного распада: для него мысль о распаде радиоактивных элементов не выглядела столь абсурдной, как для других. В дальнейшем Резерфорд сознательно будет стремиться осуществить искусственную «трансмутацию элементов» и в 1919 г., через 20 лет после начала своих занятий радиоактивностью, добьется цели.
СТАБИЛЬНЫЕ ИЗОТОПЫ
В приведенной схеме распада 23892U последний элемент ряда — стабильный изотоп свинца 20682Pb — обязательно должен иметь атомную массу 206; в противном случае вся эта схема распада — не более чем красивое, но умозрительное построение. Поначалу такой вывод смутил химиков: они-то хорошо знали, что атомная масса природного свинца равна 207,2. Но вскоре после появления идеи об изотопах, в том же 1913 г., американский ученый Теодор Уильям Ричардс (1868—1928) определил атомную массу свинца, выделенную из минералов урана, и показал, что она действительно равна 206. Год спустя Фредерик Содди установил, что атомная масса свинца, образующегося при распаде тория, равна 208 — в полном согласии с предсказаниями для ториевого радиоактивного семейства. Отсюда следовал однозначный вывод: природный свинец представляет собой смесь стабильных изотопов с целочисленными атомными массами. Более того: наличие изотопов не является, по-видимому, привилегией только лишь радиоактивных элементов, но все химические элементы представляют собой смесь изотопов с целочисленными атомными массами.
Указания на справедливость этой гипотезы получил Дж. Дж. Томсон все в том же 1913 г. в сотрудничестве с Фрэнсисом Уильямом Астоном (1877—1945). На фотографиях пучков ионов неона, полученных с помощью знаменитого «метода парабол» Томсона, они заметили, кроме изотопа неона-20, также следы изотопа неона-22. Чтобы убедиться в этом, Астон предпринял первую в истории попытку разделить изотопы неона и даже добился на этом пути некоторого успеха. (Тридцать лет спустя метод газовой диффузии, использованный впервые Астоном для разделения изотопов неона, найдет применение для разделения изотопов урана. В нынешней ядерной энергетике это один из самых необходимых процессов.) Но в целом наука в то время еще не была готова к решению такой задачи, и Астон избрал другой путь: он построил масс-спектрограф, который позволял измерять массы изотопов с точностью 0,1 %, не выделяя их предварительно из естественной смеси изотопов.
Первая мировая война надолго задержала осуществление планов Астона: лишь в 1919 г. он смог завершить свой прибор и приступить к систематическим исследованиям. Уже к концу 1920 г. Астон изучил изотопный состав 19 элементов и у 9 из них нашел изотопы. Примерно в это же время американский ученый Артур Джеффри Демпстер (1886—1950) сконструировал свой масс-спектрограф, и совокупными усилиями он и другие исследователи

