Эволюция разума - Рэймонд Курцвейл
Шрифт:
Интервал:
Закладка:
Ввиду активного расширения объема информации в генетических базах данных существует повышенный интерес к разработке способов сжатия генетических данных. С помощью стандартных алгоритмов компрессии генетические данные удается сжать примерно на 90 % по объему: Hisahiko Sato et al., DNA Data Compression in the Post Genome Era, Genome Informaties 12 (2001): 512–514.
Таким образом, удается сжать геном до объема около 80 млн байт без потери информации (это означает, что на основании этих данных мы прекрасно можем воссоздать исходные 800 млн байт генетической информации).
Теперь учтем, что свыше 98 % генома не кодирует белки. Даже после применения стандартного алгоритма компрессии (в результате чего устраняется избыточность и используется стандартный поиск известных последовательностей) алгоритмическое содержание некодирующих областей оказывается достаточно низким, что означает, что мы можем дополнительно сократить объем текста без потери информации. Однако, поскольку мы все еще находимся в начале пути обратного проектирования генома, мы не можем достаточно надежно оценить последствия дальнейшего сокращения объема на основе функционально эквивалентного алгоритма. Таким образом, мне кажется разумным остановиться на компрессии до 30–100 млн байт. Верхний предел этого диапазона соответствует только компрессии данных, без алгоритмического упрощения.
Только часть (хотя и значительная) этой информации относится к строению головного мозга.
2. Второй способ рассуждений следующий. Поскольку в геноме человека содержится около 3 млрд оснований, лишь небольшая часть отвечает за кодирование белков. По современным оценкам, в геноме человека существует около 26 тыс. генов белков. Если принять, что эти гены в среднем содержат около 3000 оснований полезной информации, получим около 78 млн оснований. Информационное содержание одного основания ДНК составляет только два бита, так что в сумме все эти основания составляют около 20 млн байт информации (78 млн оснований поделить на четыре). В кодирующей белок последовательности гена каждое слово (кодон), состоящее из трех оснований ДНК, транслируется в одну аминокислоту. Таким образом, существует 43 = 64 кодона, состоящих из трех оснований ДНК. Однако в белках присутствует лишь 20 аминокислот плюс стоп-кодон (не кодирующий никакой аминокислоты). Оставшиеся 43 кодона — это синонимы первых 21. Для кодирования 64 возможных комбинаций нуклеотидов нужно 6 бит, а для кодирования 21 комбинации — только 4,4 бита (log221), что позволяет сохранить 1,6 бит из 6 (около 27 %) и приводит нас к общему значению 15 млн байт. Кроме того, возможно произвести стандартную компрессию повторяющихся последовательностей, хотя в кодирующих последовательностях возможностей для сжатия значительно меньше, чем в участках «мусорной» ДНК, отличающейся высокой степенью избыточности. Так мы можем спуститься до значения около 12 млн байт. Однако теперь мы должны добавить информацию относительно некодирующих участков ДНК, которые контролируют экспрессию генов. Хотя эти последовательности ДНК составляют преобладающую часть генома, их информационное содержание достаточно низкое, а уровень избыточности высокий. Учитывая наличие примерно 12 млн байт информации в кодирующих областях ДНК, вновь возвращаемся к значению около 24 млн байт. Это значительно ниже, чем полученная выше оценка от 30 до 100 млн байт.
176
S. Modha, et al., Communications of the ACM, 2011, Vol. 54 (8): 62–71; http://cacm.acm.org/magazines/2011/8/114944-cognitive-computing/fulltext.
177
Ray Kurzweil, The Singularity Is Near, глава 9, с. 458–469.
178
Micheal Denton, Organism and Machine: The Flawed Analogy, in Are We Spiritual Machines? Ray Kurzweil vs. the Critics of Strong AI, Discovery Institute, 2002, Discovery Institute, 2001.
179
Hans Moravec, Mind Children, Harvard University Press, 1988.
180
Гари Ларсон (род. в 1950) — известный американский карикатурист.
181
Джойс Кэрол Оутс (род. в 1938) — американская писательница, поэт, прозаик и критик.
182
www.gallup.com/poll/147350/optimism-future-youth-reaches-time-low.aspx.
183
James C. Riley, Rising Life Expectancy: A Global History, Cambridge University Press, 2001.
184
Martine Rothblatt, Transgender to Transhuman, 2011. Автор объясняет, как изменится наше отношение к «трансчеловеку» — например, обладателю небиологического, но убедительно сознательного разума.
185
В приведенном ниже абзаце из третьей главы книги «Сингулярность уже близка» (с. 133–135) обсуждаются пределы возможности компьютерных вычислений, основанные на законах физики.
Возможности компьютеров весьма велики. На базе работ профессора Ганса Бремерманна и профессора нанотехнологии Роберта Фрейтаса из Университета Калифорнии в Беркли профессор Сет Ллойд из Массачусетского технологического института в соответствии с известными физическими законами оценил возможности «последнего» компьютера массой один килограмм и объемом один литр (что соответствует размеру и весу современного портативного компьютера):
Seth Lloyd, Ultimate Physical Limits to Computation, Nature 406 (2000): 1047–1054.
Первые оценки возможностей компьютерных вычислений были даны Гансом Бремерманном в 1962 г.:
Hans J. Bremermann, Optimization Through Evolution and Recombination, in M. C. Yovits, C. T. Jacobi, C. D. Goldstein (eds.), Self Organizing Systems, Spartan Books, Washington, 1962, pp. 93–106.
В 1984 г. Роберт Фрейтас младший продолжил исследования Бремерманна:
Robert A. Freitas Jr., Xenopsychology, Analog, 1984, 104: 41–53, http://www.rfreitas.com/Astro/Xenopsychology.htm#SentienceQuotient.
Возможности компьютерных вычислений зависят от доступности энергии. Энергия, заключенная в определенном количестве вещества, связана с атомами и субатомными частицами этого вещества.
Чем больше в веществе атомов, тем больше энергия. Как обсуждалось выше, для вычислений в принципе могут использоваться любые атомы. Поэтому чем больше атомов — тем больше возможности вычислений. Энергия атомов и частиц увеличивается с повышением частоты их движений — чем активнее движение, тем больше энергия. То же соотношение верно и для возможности компьютерных вычислений: чем выше частота движения, тем больше вычислений может совершить каждый элемент системы (например, атом). Именно это правило реализуется в современных микросхемах: чем выше частота чипа, тем больше скорость вычислений.
Таким образом, способность объекта производить вычисления пропорциональна его энергии. В соответствии с уравнением Эйнштейна (E = mc2) потенциальная энергия килограмма вещества чрезвычайна велика. Квадрат скорости света — это очень большая величина, примерно 1017 м2/с2. Вычислительный потенциал вещества также определяется постоянной Планка, которая имеет чрезвычайно малую величину — 6,6 х 10-34 Дж·с. Теоретический предел способности объекта осуществлять вычисления можно получить путем деления общей энергии объекта (средней энергии каждого атома или частицы этого объекта, умноженной на число таких атомов или частиц) на постоянную Планка.
Ллойд показывает, что потенциальная вычислительная способность килограмма вещества равна энергии, поделенной на постоянную Планка и умноженной на число π. И поскольку энергия килограмма вещества столь велика, а постоянна Планка столь мала, данное уравнение приводит нас к чрезвычайно большой величине — около 5 х 1050 операций в секунду:
(π х 1017 м2/с2)/(6,6 х 10-34 Дж·с) ~ 5 х 1050 операций/с.
Если мы сравним это значение с самыми консервативными оценками способностей человеческого мозга (1019 операций/с и около 1010 жителей планеты), мы придем к выводу, что операционная способность килограмма вещества в пять миллиардов триллионов раз выше соответствующей способности человеческой цивилизации:
5 х 1050 операций/с ~ 5 х 1021 (пять миллиардов триллионов) х способность человеческой цивилизации (1029 операций/с).
Если, как я считаю, для функциональной симуляции человеческого разума будет достаточно операционной способности 1016 операций/с, вычислительная способность «последнего» компьютера будет эквивалентна вычислительной способности разума пяти триллионов триллионов человеческих цивилизаций:
1010 человек х 1016 операций/с = 1026 — такова вычислительная способность человеческой цивилизации; 5 х 1050 операций/с ~ 5 х 1024 (5 триллионов триллионов) х 1026.
Объем вычислений, проделанных таким компьютером за одну тысячную наносекунды, эквивалентен объему вычислений, произведенных всей человеческой цивилизацией за последние 10 тыс. лет. Это оценочное значение основано на допущении, что за последние 10 тыс. лет на Земле жило 10 млрд человек, что, конечно же, неверно. В реальности население Земли очень сильно выросло за последнее время и достигло примерно 6,1 млрд в 2000 г. В году 3 x 107 секунд, а в десяти тысячах лет — 3 х 1011 секунды. Таким образом, используя оценочное значение для вычислительной способности человеческой цивилизации 1026 операций/с, можно сказать, что за 10 тыс. лет суммарный разум всей человеческой цивилизации совершил не более 3 х 1037 вычислений. «Последний» компьютер осуществляет 5 х 1050 вычислений в секунду. Поэтому симуляция мыслительной активности 10 млрд человек за 10 тыс. лет займет примерно 10-13 с, что составляет одну тысячную наносекунды.