- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
YouTube. Как самый популярный видеохостинг завоевал мир? - Марк Берген
Шрифт:
Интервал:
Закладка:
Google уже давно работала над такого рода сверхчеловеческим интеллектом, не предавая эти усилия огласке. В 2011 году в лабораторию «прорывных технологий» направили тайную группу программистов для разработки компьютерных систем, которые могли бы, по сути, имитировать человеческий образ мышления. Группа называла себя Brain[161]. Компьютерные системы продемонстрировали прогресс в распознавании человеческой речи и содержания показываемых им изображений. Они умели выигрывать у людей в шахматы. Но это были относительно слабые достижения; компьютеры не могли вести беседу, как роботы из «Звездного пути». И у них была узкая специализация. Модель, обученная играть в шахматы, не умела играть в шашки. Модель могла опознать кошку на фотографиях, если ее обучали таким образом: «Ищи четыре лапы, заостренные уши, усы и хвост». Но покажите ей собаку, и она выдаст: «Это не кошка». Компьютерам нужен был общий интеллект. Чтобы это осуществить, команда Brain воскресила идею, которая давно пылилась на полках. Еще с 1940-х годов ученые-компьютерщики начали придумывать модели машинного интеллекта, основанные на нейронных сетях, то есть слоях математических моделей, которые могли бы обрабатывать данные — изображения, звуки и концепции — так же, как это делает человеческий мозг. Таким образом, машины могли обучаться без определенных меток (кошка, ферзь). Но в человеческом мозге насчитывается, возможно, 100 миллиардов нейронов и триллионы синапсов. Компьютеры были недостаточно мощными, чтобы воспроизвести что-либо подобное; поэтому нейронные сети оставались бездействующей теорией — до тех пор, пока Интернет не начал процветать и компьютеры не приобрели огромную силу. Свою первую систему для проработки такого подхода к искусственному интеллекту Google назвала DistBelief — в честь распределенного обучения, практики объединения кластеров машин; но это название служило признаком видимой сложности задачи. Если модель сработала — это невероятно!
Программисты Brain, которые изначально работали на том же этаже, что и Пейдж и Брин, часто обсуждали одну научную статью, опубликованную в 2005 году. В ней исследовались пациенты с эпилептическими припадками; целью было увидеть, как они распознают людей или объекты. Когда им показывали определенные лица, например актрису Дженнифер Энистон, необъяснимым образом срабатывала конкретная нейронная цепь в мозге, связанная с формированием воспоминаний. Та же самая цепь активировалась, когда пациентам показывали фотографии Энистон и Эйфелевой башни; это наводило на мысль о том, что мозг работает над созданием и кодированием ассоциаций. Программисты Google хотели знать, произойдет ли что-то подобное с машинами. Может ли нейронная сеть сама по себе закодировать изображение знакомого объекта или концепции? Для этого требовалось показать сети огромный шквал фотографий.
К счастью, Google владела самым большим хранилищем когда-либо собранных видеоизображений, гигантской библиотекой человеческого опыта. Исследователи мозга загружали в свою нейронную сеть кадры с YouTube — в частности, из видео с кошками. Миллионы их были закачаны в машины без каких-либо ярлыков, указывающих на связь с кошками. Google построила сеть, которая (будучи куда меньше нашего мозга) содержала в сто раз больше нейронов и синапсов, чем любая более ранняя компьютерная версия. Эта сеть сама придумала, как обнаружить кошку.
«Мы можем узнать, кто такие кошки, — объяснил Пейдж Чарли Роузу два года спустя в Ванкувере. — Похоже, это действительно важно». С самого рождения Google Пейдж был зациклен на искусственном интеллекте. Как он объяснил в одном интервью еще в 2002 году[162]: для того чтобы поиск по глобальной сети был эффективныи и действительно давал людям то, что они хотят, необходимо знать «все на свете» — а значит, нужен искусственный интеллект. Десять лет спустя Пейдж справедливо предсказал, что машинное обучение войдет в моду. Amazon выпустила устройство для распознавания речи под названием Echo. Марк Цукерберг, который обнародовал свои ежегодные цели по улучшению жизни, потратил год на изобретение робота-дворецкого. Технологические компании распространили слоган «Сначала мобильники», демонстрируя свою пригодность для мира смартфонов; Google обозначила для себя — «Сначала ИИ».
Как только на сцене TED завершился клип с аркадными играми, Пейдж перевел дух. «Представьте, если бы такого рода интеллект занялся вашим рабочим графиком, вашими информационными потребностями, — сказал он Роузу. — Мы только в начале этого пути». Вскоре каждое подразделение компании Пейджа переписало бизнес-планы и ориентиры, чтобы включить как можно больше искусственного интеллекта. Сначала плоды появились в поисковике Google. Введите невероятно длинный вопрос (в каком колледже училась актриса, которая играет маму Рэйчел в сериале «Друзья»?) — и вот вам ответ. Переведите этот вопрос на французский — и вуаля. Нейронные сети использовались в спам-фильтрах электронной почты Google, таргетинге рекламы и цифровых фотоальбомах.
На YouTube нейронные сети включились в движок рекомендаций.
* * *
Представьте себе систему рекомендаций YouTube как гигантскую многорукую сортировочную машину. У нее есть одна задача: предсказать, какое видео человек посмотрит следующим, и предложить его. С самого начала существования YouTube его компьютерные программы стремились это делать. Но нейронная сеть Brain могла предсказывать и сортировать так, как не умели люди, которым свойственно ошибаться, и более хрупкие коды. Сеть, согласно своей природе, зачастую вела себя так, что инженеры не могли ее сразу и полностью понять.
К тому времени, когда на YouTube появился Менгеринк, созданная группой Brain сеть уже была введена в действие. Зрители этого не замечали — только некоторые обратили внимание на устойчивый рост числа предлагаемых им клипов. Сеть научилась показывать более короткие клипы, когда люди смотрели их на телефонах, и более длинные в приложении YouTube для телевизоров; оба решения улучшили общее время просмотра. Сеть научилась сортировать эпизодические видеоряды. Она соединяла точки и создавала ассоциации, кодируя их. Когда люди смотрели «Мстителей», сеть вычисляла, что им будут интересны также клипы о Роберте Дауни-младшем. Это может показаться не таким уж сложным — звезда блокбастеров в блокбастере, — но представьте, что это делается с миллионами видеороликов на тысячи разных тем на десятках языков. Через два года сеть Brain будет рекомендовать[163] около двухсот миллионов различных видеороликов в день на 76 языках.
Кроме того, сеть

