- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер
Шрифт:
Интервал:
Закладка:

Рис. 5.14. Несмотря на то, что — согласно теореме Лиувилля — объем фазового пространства сохраняется постоянным, он, как правило, будет расплываться в результате чрезвычайно сложной эволюции системы во времени
Представим себе, что начальная область R0 невелика и имеет «приемлемую» форму — достаточно гладкую, лишенную причудливых выступов — которая указывает на то, что при описании состояний, принадлежащих этой области, чрезмерно высокая точность совсем необязательна. Но с течением времени область Rt начинает деформироваться и растягиваться — сначала принимая форму, напоминающую амебу, а затем образуя причудливые отростки, которые простираются далеко в стороны, замысловато извиваясь то в одном, то в другом направлении.
Объем при этом действительно сохраняется, но тот же самый объем может теперь истончиться и распределиться по обширной области фазового пространства. Практически аналогичная картина будет наблюдаться в случае с капелькой чернил, попавшей в большую емкость с водой. В то время, как реальный объем чернильной жидкости остается неизменным, она постепенно истончается, распределяясь по всему объему емкости. Вероятно, подобным образом ведет себя и исходная область R0 в фазовом пространстве. Она не обязательно должна расплываться по всему фазовому пространству (эта предельная ситуация известна под названием «эргодической») — но вполне может в конце концов занять область, значительно превышающую ее первоначальный объем. (Дальнейшее обсуждение см. в книге: Дэвис [1974].)
Трудность заключается в том, что сохранение объема отнюдь не влечет за собой сохранение формы : малые области имеют тенденцию деформироваться, и их деформации простираются на большие расстояния. В многомерных пространствах проблема расплывания начальной области гораздо более серьезна, чем в пространствах малой размерности, так как «направлений», по которым расплываются отдельные части нашей области, гораздо больше. На самом деле, вместо того, чтобы «помочь» нам держать область Rt под контролем, теорема Лиувилля создает фундаментальную проблему! Не будь теоремы Лиувилля, можно было бы представить, что бесспорная тенденция к расплыванию области в фазовом пространстве могла бы (при соответствующих обстоятельствах) компенсироваться уменьшением полного объема. Но теорема Лиувилля говорит нам, что такое уменьшение невозможно, и нам остается только мириться с таким поразительным свойством — универсальным для всех классических динамических (гамильтоновых) систем нормального типа![113]
Помня о неизбежном расплывании исходной области в фазовом пространстве, уместно спросить: а как в таком случае вообще возможно делать предсказания в классической механике? Это действительно непростой вопрос. Расплывание начальной области говорит нам о том, что независимо от степени точности, с которой мы знаем начальное состояние системы (конечно, в разумных пределах), тенденция к возрастанию погрешностей со временем сделает нашу исходную информацию практически бесполезной. В этом смысле классическая механика в принципе непредсказуема. (Вспомним введенное выше понятие «хаоса».)
Чем же в таком случае объяснить явный успех ньютоновской механики? Говоря о небесной механике (т. е. движении небесных тел под действием сил гравитации), в качестве наиболее вероятной причины можно назвать, наверное, то, что, во-первых, небесная механика занимается изучением сравнительно небольшого числа связанных тел (Солнца, планет и их естественных спутников — лун), между которыми имеется большой разброс по массе, поэтому в первом приближении возмущающим действием менее массивных тел на более массивные можно пренебречь и рассматривать только взаимодействие нескольких массивных тел друг на друга; во-вторых, законы движения, применимые к отдельным частицам, образующим эти тела, как нетрудно видеть, работают и на уровне самих тел, вследствие чего с очень хорошим приближением Солнце, планеты и луны можно, в свою очередь, рассматривать как частицы и не беспокоиться по поводу малых движений отдельных составляющих небесных тел![114] И снова нам удается свести все к рассмотрению системы из «небольшого» количества тел, где расплывание начальной области в фазовом пространстве становится несущественным.
Помимо небесной механики и поведения запущенных тел (камней, пуль, ядер, и т. д.), что можно рассматривать как ее частный случай, а также изучения простых систем, содержащих небольшое число частиц, — основные методы, использовавшиеся ньютоновской механикой, очевидно, не могут быть вообще отнесены к разряду «детерминистско-предсказуемых» в том смысле, о котором мы говорили выше. Общую ньютоновскую схему используют скорее для построения моделей, изучение которых позволяет делать выводы о поведении системы в целом. Некоторые точные следствия из законов движения, такие, как законы сохранения энергии, импульса и углового момента, действительно выполняются на любых масштабах. Кроме того, существуют статистические свойства, которые можно комбинировать с динамическими законами, управляющими отдельными частицами, и использовать их для общего прогнозирования поведения системы. (См. обсуждение термодинамики в главе 7; эффект расплывания в фазовом пространстве, рассмотрением которого мы занимались выше, находится в достаточно тесной взаимосвязи со вторым началом термодинамики — и при соблюдении надлежащей осторожности эти идеи действительно можно использовать для прогнозирования.) Искусно проделанное самим Ньютоном вычисление скорости звука в воздухе (слегка подправленное столетие спустя Лапласом) — хороший тому пример. Но весьма редко случается, чтобы детерминизм, присущий ньютоновской (или, в более широком смысле, гамильтоновой) динамике, реально использовался на практике.
Эффект расплывания начальной области в фазовом пространстве приводит к еще одному замечательному следствию. Только подумайте: ведь он свидетельствует о том, что классическая механика, на самом деле, не в состоянии адекватно описать наш с вами мир! Я несколько преувеличиваю — но не так уж сильно. Классическая механика может достаточно точно описывать поведение жидких тел — главным образом газов, хотя (с приемлемой степенью точности) и собственно жидкостей — в том случае, когда интерес представляют общие «усредненные» свойства систем частиц; но она испытывает затруднения при попытке объяснить структуру твердых тел, которая отличается более высокой организацией. Проблемой здесь становится невозможность описать феномен сохранения твердым телом своей формы несмотря на то, что оно состоит из мириадов точечноподобных частиц, структура относительного расположения которых постоянно нарушается из-за расплывания начальной области в фазовом пространстве. Как мы теперь знаем, для того, чтобы разобраться в строении твердых тел, необходима квантовая теория, поскольку квантовые эффекты могут каким-то образом предотвратить расплывание портрета системы в фазовом пространстве. Это — весьма важный вопрос, к которому мы еще вернемся в дальнейшем (см. главы 8 и 9).
Затронутая нами тема имеет не менее важное значение и для вопроса о построении «вычислительной машины». Эффект расплывания в фазовом пространстве относится к разряду явлений, которые необходимо контролировать. Нельзя позволить слишком сильно расплываться той области фазового пространства, которая соответствует «дискретному» состоянию вычислительного устройства (такой, например, как описанная выше область R0). Напомним, что даже в «бильярдном компьютере» Фредкина— Тоффоли требовались некоторые специально вводимые извне твердые стенки, необходимые для правильной работы компьютера. Объяснить «цельность» объекта, состоящего из множества частиц, можно в действительности только с помощью квантовой механики. Создается впечатление, что даже «классическая» вычислительная машина должна заимствовать некоторые принципы из квантовой физики — иначе она просто не сможет работать эффективно!

