Мусорная ДНК. Путешествие в темную материю генома - Несса Кэри
Шрифт:
Интервал:
Закладка:
Имеются у таких средств и другие недостатки. Антитела эффективны лишь для борьбы с молекулами, которые присутствуют в телесных жидкостях (скажем, в крови) или на поверхности клеток. Эти лекарства не могут проникать внутрь клеток, чтобы выполнять там свою работу. А вот малые молекулы определенной структуры в случае необходимости это умеют. Но с их помощью, похоже, можно контролировать лишь ограниченное число разновидностей белков.
Малые молекулы работают как ключ в замке. Если вы находитесь в своем доме, проще всего помешать другим войти, заперев дверь изнутри и оставив ключ в замочной скважине. А если вам захочется навеки закрыть всем доступ в дом, вы можете даже использовать слегка дефектный ключ, который навсегда застрянет в замке.
Такой подход срабатывает, поскольку ключ входит в замок весьма плотно. А вот для блокировки какого-нибудь старомодного засова ключ бесполезен. Ему там просто не во что войти. Он будет лишь скользить по поверхности. То же самое относится и к нашим клеткам. Внутри у них имеется множество белков, которые мы и рады бы контролировать, только вот не можем создать для них подходящие малые молекулы — из-за структуры этих белков. В них попросту нет удобных щелей или карманов, куда можно было бы аккуратно вставить молекулу лекарства. У них обширные плоские поверхности, на которых негде приютиться малой молекуле.
Можно попытаться создать более крупные молекулы, способные покрыть всю такую поверхность. Проблема в том, что как только молекулы лекарства превысят определенный размер, они перестанут хорошо циркулировать в организме и вообще не смогут попасть в клетки, чтобы сделать свое дело.
Есть и еще одна проблема. Да, достаточно трудно создать лекарство, молекулы которого сумеют попасть в клетку, соединиться с определенным белком и остановить его работу. Однако неизмеримо труднее создать лекарство, молекулы которого сумеют попасть в клетку, соединиться с определенным белком и затем вынудить его работать интенсивнее, или быстрее, или лучше. Практически невозможно разработать лекарство традиционного типа, которое усиливало бы экспрессию одного определенного белка или включало бы лишь один-единственный ген.
Может ли нас спасти мусорная ДНК?
Вот почему поиск новых подходов к медикаментозному лечению вызывает такой большой интерес. Вот почему так важно все больше узнавать о мусорной ДНК. Используя длинные некодирующие РНК или малые РНК, теоретически возможно избирательно воздействовать на биологические пути, на которые нельзя повлиять с помощью традиционных препаратов, где основой служат малые молекулы или антитела. И неважно, что мишени воздействия таятся внутри клеток и имеют обширные плоские поверхности. Неважно, что нам понадобится — усиливать экспрессию или менять особенности функционирования белка или гена. Можно применить этот новый подход для работы с любым типом клеточных мишеней.
Теоретически.
В том-то и дело. Теоретически. Идеи встречаются часто, а вот их успешное воплощение — куда реже. Так что имеет смысл хорошенько разобраться в реальном положении вещей, прежде чем все мы начнем вкладывать свои сбережения в какую-нибудь новомодную биотехнологическую компанию, орудующую в этой сфере. Уже сейчас здесь происходит очень много всего2, поэтому сосредоточимся на некоторых наиболее выдающихся примерах.
Печень вырабатывает белок, отвечающий за распространение по организму ряда других молекул. Во всем мире живет около 50 тысяч человек, унаследовавших мутацию гена, кодирующего этот белок. Собственно, встречается масса разновидностей такой мутации, но все они, судя по всему, дают схожий эффект — изменяют особенности функционирования белка, да так, что он начинает служить переносчиком не тех молекул[74],3.
Когда такое происходит, в тканях постепенно скапливаются отложения, состоящие из смеси нормального и мутантного белка. Больные страдают от целого ряда симптомов — в зависимости от того, какие ткани затронуты. Примерно в 80% известных случаев сильнее всего затронуто сердце, что приводит к потенциально летальным сердечным дефектам. В остальных 20% случаев отложения часто скапливаются в нервах и спинном мозге. Это может приводить к нарушению функционирования самых разных органов — в частности, к возникновению аномальных и болезненных реакций на слабые раздражители.
Компания Alnylam создала на основе малой РНК, прикрепленной к молекулам из группы сахаров, средство, которое можно вводить пациентам при помощи инъекций. Малая РНК связывается с нетранслируемой областью на конце информационной РНК, кодирующей белок, который мутирует при данном заболевании. Это обрекает данную информационную РНК на уничтожение.
В 2013 году компания обнародовала сведения о второй стадии клинических испытаний своего препарата. После введения средства у пациентов наблюдалось резкое падение уровня циркуляции мутантной и нормальной версий белка, причем этот пониженный уровень долгое время оставался неизменным4. Обнадеживает. Но пока нельзя считать, что новое средство исцеляет от данной болезни. Есть предположения, что такое резкое снижение уровня циркуляции белка приведет к тому, что отложения в тканях будут накапливаться медленнее, что должно привести по крайней мере к замедлению развития заболевания. Но мы пока не знаем, так ли это на самом деле. Требуются более масштабные испытания, в ходе которых будут отслеживаться реальные симптомы и реальное развитие болезни. Только если окажется, что новое лекарство влияет и на то, и на другое, препарат можно будет считать эффективным.
Еще одна компания, Mirna Therapeutics, создала малую РНК, которая подражает действию другой, играющей важную роль в онкологических процессах. Эндогенная малая РНК, естественным путем вырабатываемая в организме, подавляет развитие злокачественных опухолей. Ее функция состоит в том, чтобы сдерживать размножение клеток. Она добивается этого, ослабляя экспрессию по меньшей мере 20 других генов, пытающихся заставить клетку делиться. Экспрессия этой малой РНК часто ослаблена у больных раком (или вообще сведена к нулю), что снимает тормоза с процессов клеточного деления. Исследователи надеются, что при введении аналога этой РНК в клетки больных удастся восстановить нормальную картину генетической регуляции, и раковые клетки перестанут размножаться так стремительно.
Компания испытала свою РНК на больных раком печени. Пока проводятся лишь испытания, цель которых — показать, какие дозы лекарства пациент способен перенести. Пройдет еще некоторое время, прежде чем мы узнаем, принесет ли эта методика положительные клинические результаты5.
В препаратах, разрабатываемых компаниями Alnylam и Mirna Therapeutics, кроется одна хитроумная идея. Среди проблем, с которыми прежде сталкивались фармацевтические фирмы, пытаясь разработать лекарства на основе нуклеиновых кислот, едва ли не самой большой проблемой считалась детоксикационная способность самого организма. Впрочем, с традиционными лекарствами часто та же история. Упрощенно говоря, когда в организм попадает новое вещество любого типа, весьма вероятно, что оно отправится в печень. Одна из главных задач этого чрезвычайно энергичного органа — проводить детоксикацию всего, чей вид ему не нравится. На протяжении всей нашей эволюционной истории этот процесс нам очень помогал, защищая нас от токсинов, которые могут содержаться в пище. Однако проблема в том, что печень не обладает инструментами, позволяющими ей отличать яды, которых мы хотели бы избежать, от лекарств, которые мы пытаемся использовать. Печень просто затащит их в себя и попытается уничтожить — вне зависимости от того, с ядом или с лекарством она имеет дело.
Alnylam и Mirna Therapeutics, если использовать старинное изречение, обратили неизбежность в доблесть[75]. Alnylam таргетирует экспрессию белка, который вырабатывается в печени. Mirna Therapeutics разрабатывает средства для лечения рака печени. В том и в другом случае молекулы лекарств будут захватываться как раз тем органом, в который их и хотят ввести. Компании подбирают особенности структуры и упаковки этих молекул так, чтобы после попадания в печень молекулы просуществовали достаточно долго и успели выполнить свою работу. Для ряда других заболеваний также предлагались методики лечения, связанные с малыми РНК. Предварительные эксперименты, которые проводятся на выращиваемых в лаборатории клетках или на животных, часто демонстрируют обнадеживающие результаты. Но для заболеваний, при которых нуклеиновые кислоты должны избегать печени и сразу захватываться мозгом (например, при боковом амиотрофическом склерозе6), пока не совсем понятно, сумеет ли медицина успешно применить такую технологию на практике.