- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Программирование на языке Пролог для искусственного интеллекта - Иван Братко
Шрифт:
Интервал:
Закладка:
12.1. Определите отношения после, цель и h для задачи поиска маршрута рис. 12.2. Посмотрите, как наш алгоритм поиска с предпочтением будет вести себя при решении этой задачи.
12.2. Поиск c предпочтением применительно к головоломке "игра в восемь"
Если мы хотим применить программу поиска с предпочтением, показанную на рис. 12.3, к какой-нибудь задаче, мы должны добавить к нашей программе отношения, отражающие специфику этой конкретной задачи. Эти отношения определяют саму задачу ("правила игры"), а также вносят в алгоритм эвристическую информацию о методе ее решения. Эвристическая информация задается в форме эвристической функции.
/* Процедуры, отражающие специфику головоломки
"игра в восемь".
Текущая ситуация представлена списком положений фишек;
первый элемент списка соответствует пустой клетке.
Пример:
┌───┐
3│123│ Эта позиция представляется так:
2│8 4│ [2/2, 1/3, 2/3, 3/3, 3/2, 3/1, 2/1, 1/1, 1/2]
1│765│
└───┘
123
"Пусто" можно перемещать в любую соседнюю клетку,
т.е. "Пусто" меняется местами со своим соседом.
*/
после( [Пусто | Спис], [Фшк | Спис1], 1) :-
% Стоимости всех дуг равны 1
перест( Пусто, Фшк, Спис, Спис1).
% Переставив Пусто и Фшк, получаем СПИС1
перест( П, Ф, [Ф | С], [П | С] ) :-
расст( П, Ф, 1).
перест( П, Ф, [Ф1 | С], [Ф1 | C1] ) :-
перест( П, Ф, С, C1).
расст( X/Y, X1/Y1, P) :-
% Манхеттеновское расстояние между клетками
расст1( X, X1, Рx),
расст1( Y, Y1, Рy),
P is Рх + Py.
расст1( А, В, P) :-
P is А-В, P >= 0, ! ;
P is B-A.
% Эвристическая оценка h равна сумме расстояний фишек
% от их "целевых" клеток плюс "степень упорядоченности",
% умноженная на 3
h( [ Пусто | Спис], H) :-
цель( [Пусто1 | Цспис] ),
сумрасст( Спис, ЦСпис, P),
упоряд( Спис, Уп),
H is P + 3*Уп.
сумрасст( [], [], 0).
сумрасст( [Ф | С], [Ф1 | C1], P) :-
расст( Ф, Ф1, P1),
сумрасст( С, Cl, P2),
P is P1 + Р2.
упоряд( [Первый | С], Уп) :-
упоряд( [Первый | С], Первый, Уп).
упоряд( [Ф1, Ф2 | С], Первый, Уп) :-
очки( Ф1, Ф2, Уп1),
упоряд( [Ф2 | С], Первый, Уп2),
Уп is Уп1 + Уп2.
упоряд( [Последний], Первый, Уп) :-
очки( Последний, Первый, Уп).
очки( 2/2, _, 1) :- !. % Фишка в центре - 1 очко
очки( 1/3, 2/3, 0) :- !.
% Правильная последовательность - 0 очков
очки( 2/3, 3/3, 0) :- !.
очки( 3/3, 3/2, 0) :- !.
очки( 3/2, 3/1, 0) :- !.
очки( 3/1, 2/1, 0) :- !.
очки( 2/1, 1/1, 0) :- !.
очки( 1/1, 1/2, 0) :- !.
очки( 1/2, 1/3, 0) :- !.
очки( _, _, 2). % Неправильная последовательность
цель( [2/2, 1/3, 2/3, 3/3, 3/2, 3/1, 2/1, 1/1, 1/2] ).
% Стартовые позиции для трех головоломок
старт1( [2/2, 1/3, 3/2, 2/3, 3/3, 3/1, 2/1, 1/1, 1/2] ).
% Требуется для решения 4 шага
старт2( [2/1, 1/2, 1/3, 3/3, 3/2, 3/1, 2/2, 1/1, 2/3] ).
% 5 шагов
старт3( [2/2, 2/3, 1/3, 3/1, 1/2, 2/1, 3/3, 1/1, 3/2] ).
% 18 шагов
% Отображение решающего пути в виде списка позиций на доске
показреш( []).
показреш( [ Поз | Спис] :-
показреш( Спис),
nl, write( '---'),
показпоз( Поз).
% Отображение позиции на доске
показпоз( [S0, S1, S2, S3, S4, S5, S6, S7, S8] ) :-
принадлежит Y, [3, 2, 1] ), % Порядок Y-координат
nl, принадлежит X, [1, 2, 3] ), % Порядок X-координат
принадлежит( Фшк-X/Y,
[' '-S0, 1-S1, 2-S2, 3-S3, 4-S4, 5-S5, 6-S6, 7-S7, 8-S8]),
write( Фшк),
fail. %Возврат с переходом к следующей клетке
показпоз(_).
Рис. 12.6. Процедуры для головоломки "игра в восемь", предназначенные для использования программой поиска с предпочтением рис. 12.3.
Существуют три отношения, отражающих специфику конкретной задачи:
после( Верш, Верш1, Ст)
Это отношение истинно, когда в пространстве состояний существует дуга стоимостью Ст между вершинами Верш и Верш1.
цель( Верш)
Это отношение истинно, если Верш — целевая вершина.
h( Верш, H)
Здесь H — эвристическая оценка стоимости самого дешевого пути из вершины Верш в целевую вершину.
В данном и следующих разделах мы определим эти отношения для двух примеров предметных областей: для головоломки "игра в восемь" (описанной в разделе 11.1) и планирования прохождения задач в многопроцессорной системе.
Отношения для "игры в восемь" показаны на рис. 12.6. Вершина пространства состояний — это некоторая конфигурация из фишек на игровой доске. В программе она задается списком текущих положений фишек. Каждое положение определяется парой координат X/Y. Элементы списка располагаются в следующем порядке:
(1) текущее положение пустой клетки,
(2) текущее положение фишки 1,
(3) текущее положение фишки 2,
…
Целевая ситуация (см. рис. 11.3) определяется при помощи предложения
цель( [2/2, 1/3, 2/3, 3/3, 3/2, 3/1, 2/1, 1/1, 1/2] ).
Имеется вспомогательное отношение
расст( K1, K2, P)
P — это "манхеттеновское расстояние" между клетками K1 и K2, равное сумме двух расстояний между K1 и K2: расстояния по горизонтали и расстояния по вертикали.
Рис. 12.7. Три стартовых позиции для "игры в восемь": (а) решение требует 4 шага; (b) решение требует 5 шагов; (с) решение требует 18 шагов.
Наша задача — минимизировать длину решения, поэтому мы положим стоимости всех дуг пространства состояний равными 1. В программе рис. 12. 6. даны также определения трех начальных позиций (см. рис. 12.7).
Эвристическая функция h, запрограммирована как отношение
h( Поз, H)
Поз — позиция на доске; H вычисляется как комбинация из двух оценок:
(1) сумрасст — "суммарное расстояние" восьми фишек, находящихся в позиции Поз, от их положений в целевой позиции. Например, для начальной позиции, показанной на рис. 12.7(а), сумрасст = 4.
(2) упоряд — степень упорядоченности фишек в текущей позиции по отношению к тому порядку, в котором они должны находиться в целевой позиции. Величина упоряд вычисляется как сумма очков, приписываемых фишкам, согласно следующим правилам:
• фишка в центральной позиции — 1 очко;
• фишка не в центральной позиции, и непосредственно за ней следует (по часовой стрелке) та фишка, какая и должна за ней следовать в целевой позиции — 0 очков.
• то же самое, но за фишкой следует "не та" фишка — 2 очка.
Например, для начальной позиции рис.12.7(а),
упоряд = 6.
Эвристическая оценка H вычисляется как сумма
H = сумрасст + 3 * упоряд
Эта эвристическая функция хорошо работает в том смысле, что она весьма эффективно направляет поиск к цели. Например, при решении головоломок рис. 12.7(а) и (b) первое решение обнаруживается без единого отклонения от кратчайшего решающего пути. Другими словами, кратчайшие решения обнаруживаются сразу, без возвратов. Даже трудная головоломка рис. 12.7 (с) решается почти без возвратов. Но данная эвристическая функция страдает тем недостатком, что она не является допустимой: нет гарантии, что более короткие пути обнаруживаются раньше более длинных. Дело в том, что для функции h условие h ≤ h* выполнено не для всех вершин пространства состояний. Например, для начальной позиции рис. 12.7 (а)
h = 4 + 3 * 6 = 22, h* = 4
С другой стороны, оценка "суммарное расстояние" допустима: для всех позиций
сумрасст ≤ h*
Доказать это неравенство можно при помощи следующего рассуждения: если мы ослабим условия задачи и разрешим фишкам взбираться друг на друга, то каждая фишка сможет добраться до своего целевого положения по траектории, длина которой в точности равна манхеттеновскому расстоянию между ее начальным и целевым положениями. Таким образом, длина оптимального решения упрощенной задачи будет в точности равна сумрасст. Однако в исходном варианте задачи фишки взаимодействуют друг с другом и мешают друг другу, так что им уже трудно идти по своим кратчайшим траекториям. В результате длина оптимального решения окажется больше либо равной сумрасст.

