Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ - Скотт Майерс
Шрифт:
Интервал:
Закладка:
Помните об этих четырех подъязыках и не удивляйтесь, если попадете в ситуацию, когда соображения эффективности программирования потребуют от вас менять стратегию при переключении с одного подъязыка на другой. Например, для встроенных типов (в стиле C) передача параметров по значению в общем случае более эффективна, чем передача по ссылке, но если вы программируете в объектно-ориентированном стиле, то из-за наличия определенных пользователем конструкторов и деструкторов передача по ссылке на константу обычно становится более эффективной. В особенности это относится к подъязыку «C++ с шаблонами», потому что там вы обычно даже не знаете заранее типа объектов, с которыми имеете дело. Но вот вы перешли к использованию STL, и опять старое правило C о передаче по значению становится актуальным, потому что итераторы и функциональные объекты смоделированы через указатели C. (Подробно о выборе способа передачи параметров см. правило 20.)
Таким образом, C++ не является однородным языком с единственным набором правил. Это – конгломерат подъязыков, каждый со своими собственными соглашениями. Если вы будете помнить об этих подъязыках, то обнаружите, что понять C++ намного проще.
Что следует помнить• Правила эффективного программирования меняются в зависимости от части C++, которую вы используете.
Правило 2: Предпочитайте const, enum и inline использованию #define
Это правило лучше было бы назвать «Компилятор предпочтительнее препроцессора», поскольку #define зачастую вообще не относят к языку C++. В этом и заключается проблема. Рассмотрим простой пример; попробуйте написать что-нибудь вроде:
#define ASPECT_RATIO 1.653
Символическое имя ASPECT_RATIO может так и остаться неизвестным компилятору или быть удалено препроцессором до того, как код поступит на обработку компилятору. Если это произойдет, то имя ASPECT_RATIO не попадет в таблицу символов. Поэтому в ходе компиляции вы получите ошибку (в сообщении о ней будет упомянуто значение 1.653, а не ASPECT_RATIO). Это вызовет путаницу. Если имя ASPECT_RATIO было определено в заголовочном файле, который писали не вы, то вы вообще не будете знать, откуда взялось значение 1.653, и на поиски ответа потратите много времени. Та же проблема может возникнуть и при отладке, поскольку выбранное вами имя будет отсутствовать в таблице символов.
Решение состоит в замене макроса константой:
const double AspectRatio = 1.653; // имена, записанные большими буквами,
// обычно применяются для макросов,
// поэтому мы решили его изменить
Будучи языковой константой, AspectRatio видима компилятору и, естественно, помещается в таблицу символов. К тому же в случае использования константы с плавающей точкой (как в этом примере) генерируется более компактный код, чем при использовании #define. Дело в том, что препроцессор, слепо подставляя вместо макроса ASPECT_RATIO величину 1.653, создает множество копий 1.653 в объектном коде, в то время как использование константы никогда не породит более одной копии этого значения.
При замене #define константами нужно помнить о двух особых случаях. Первый касается константных указателей. Поскольку определения констант обычно помещаются в заголовочные файлы (где к ним получает доступ множество различных исходных файлов), важно, чтобы сам указатель был объявлен с ключевым словом const, в дополнение к объявлению const того, на что он указывает. Например, чтобы объявить в заголовочном файле константную строку типа char*, слово const нужно написать дважды:
const char * const authorName = “Scott Meyers”;
Более подробно о сущности и применений слова const, особенно в связке с указателями, см. в правиле 3. Но уже сейчас стоит напомнить, что объекты типа string обычно предпочтительнее своих прародителей – строк типа char *, поэтому authorName лучше определить так:
const std::string authorName(“Scott Meyers”);
Второе замечание касается констант, объявляемых в составе класса. Чтобы ограничить область действия константы классом, необходимо сделать ее членом класса, и чтобы гарантировать, что существует только одна копия константы, требуется сделать ее статическим членом:
class GamePlayer {
private:
static const int NumTurns = 5; // объявление константы
int scores[NumTurns]; // использование константы
...
};
То, что вы видите выше, – это объявление NumTurns, а не ее определение. Обычно C++ требует, чтобы вы представляли определение для всего, что используете, но объявленные в классе константы, которые являются статическими и имеют встроенный тип (то есть целые, символьные, булевские) – это исключение из правил. До тех пор пока вы не пытаетесь получить адрес такой константы, можете объявлять и использовать ее без предоставления определения. Если же вам нужно получить адрес либо если ваш компилятор настаивает на наличии определения, то можете написать что-то подобное:
const int GamePlayer::NumTurns; // определение NumTurns; см. ниже,
// почему не указывается значение
Поместите этот код в файл реализации, а не в заголовочный файл. Поскольку начальное значение константы класса представлено там, где она объявлена (то есть NumTurns инициализировано значением 5 при объявлении), то в точке определения задавать начальное значение не требуется.
Отметим, кстати, что нет возможности объявить в классе константу посредством #define, потому что #define не учитывает области действия. Как только макрос определен, он остается в силе для всей оставшейся части компилируемого кода (если только где-то ниже не встретится #undef). Это значит, что директива #define неприменима не только для объявления констант в классе, но вообще не может быть использована для обеспечения какой бы то ни было инкапсуляции, то есть придать смысл выражению «private #define» невозможно. В то же время константные данные-члены могут быть инкапсулированы, примером может служить NumTurns.
Старые компиляторы могут не поддерживать показанный выше синтаксис, так как в более ранних версиях языка было запрещено задавать значения статических членов класса во время объявления. Более того, инициализация в классе допускалась только для целых типов и для констант. Если вышеприведенный синтаксис не работает, то начальное значение следует задавать в определении:
class CostEstimate {
private:
static const double FudgeFactor; // объявление статической константы
... // класса – помещается в файл заголовка
};
const double // определение статической константы
CostEstimate::FudgeFactor = 1.35; // класса – помещается в файл реализации
Обычно ничего больше и не требуется. Единственное исключение обнаруживается тогда, когда для компиляции класса необходима константа. Например, при объявлении массива GamePlayer::scores компилятору нужно знать размер массива. Чтобы работать с компилятором, ошибочно запрещающим инициализировать статические целые константы внутри класса, можно воспользоваться способом, известным под названием «трюка с перечислением». Он основан на том, что переменные перечисляемого типа можно использовать там, где ожидаются значения типа int, поэтому GamePlayer можно определить так:
class GamePlayer {
private:
enum ( NumTurns = 5 }; // “трюк с перечислением” – делает из
// NumTurns символ со значением 5
int scores[NumTurns]; // нормально
...
};
Этот прием стоит знать по нескольким причинам. Во-первых, поведение «трюка с перечислением» в некоторых отношениях более похоже на #define, чем на константу, а иногда это как раз то, что нужно. Например, можно получить адрес константы, но нельзя получить адрес перечисления, как нельзя получить и адрес #define. Если вы хотите запретить получать адрес или ссылку на какую-нибудь целую константу, то применение enum – хороший способ наложить такое ограничение. (Подробнее о поддержке проектных ограничений с помощью приемов кодирования можно узнать из правила 18). К тому же, хотя хорошие компиляторы не выделяют память для константных объектов целых типов (если только вы не создаете указателя или ссылки на объект), менее изощренные могут так поступать, а вам это, возможно, ни к чему. Как и #define, перечисления никогда не станут причиной подобного нежелательного распределения памяти.
Вторая причина знать о «трюке с перечислением» чисто прагматическая. Он используется в очень многих программах, поэтому нужно уметь распознавать этот трюк, когда вы с ним сталкиваетесь. Вообще говоря, этот прием – фундаментальная техника, применяемая при метапрограммировании шаблонов (см. правило 48).
Вернемся к препроцессору. Другой частый случай неправильного использования директивы #define – создание макросов, которые выглядят как функции, но не обременены накладными расходов, связанными с вызовом функций. Ниже представлен макрос, который вызывает некоторую функцию f c аргументом, равным максимальному из двух значений: