Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Медицина » Медицинские информационные системы: многомерный анализ медицинских и экологических данных - Михаил Лушнов

Медицинские информационные системы: многомерный анализ медицинских и экологических данных - Михаил Лушнов

Читать онлайн Медицинские информационные системы: многомерный анализ медицинских и экологических данных - Михаил Лушнов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 22
Перейти на страницу:

Характер погоды сезонов значительно отличается от года к году и имеет связь с положением планет. Многолетние наблюдения показали, что соединение планет-гигантов в одном небольшом телесном угле приводит к смещению центра тяжести Солнца относительно неподвижного центра масс солнечной системы от 0,01 до 2,19 солнечного радиуса. Периоды соединения Юпитера и Сатурна происходят примерно через 20 лет. 10-летний полупериод способствует меридиональной циркуляции воздуха на Земле и экстремальным проявлениям погоды: холодной зиме, засушливому лету, ураганам, наводнениям. Поэтому «парады планет» не безобидны (Белязо В. А., 1990).

В настоящей работе использовалось два показателя солнечной активности (СА), публикуемые в сборнике «Космические данные. Месячный обзор» (1977–1988): относительное число солнечных пятен (ОЧСП), называемых иногда числами Вольфа, и плотность потока радиоизлучения на частоте 3000 МГц (ППСР3000) – на каждый день с 1977 по 1988 г. Таким образом, эти показатели отражают интенсивность СВЧ-излучений Солнца и общего показателя радиоизлучений – ОЧСП. В табличном материале и иллюстрациях обозначение СА означает солнечную активность, описываемую двумя параметрами: ППСР3000 и ОЧСП.

Таким образом, в работе использовались два показателя солнечной активности: количество солнечных пятен и излучение солнечного диска.

В 1848 году швейцарским астрономом Йоханом Рудольфом Вулфом были введены ежедневные измерения числа солнечных пятен. Его метод, который все еще используется сегодня, рассчитывает общее количество пятен, видимых на поверхности Солнца, и число групп, в которые они группируются, так как ни одна величина удовлетворительно не измеряет активность солнечных пятен.

Относительное число солнечных пятен является показателем активности всего солнечного диска. Это определяется каждый день независимо от предыдущих дней. Каждый изолированный кластер солнечных пятен называют группой пятен, и она может состоять из одного или большого количества разных пятен, размер которых колеблется от 10 или более квадратных степеней солнечной поверхности вниз к пределу решения (например, 1/25 квадратная степень). Относительное число солнечных пятен определяется как R = K (10g + s), где g – число групп пятен, s – общее количество различных пятен. Коэффициент пропорциональности K (как правило, меньше единицы) зависит от наблюдателя и предназначен для осуществления перехода к шкале Вольфа.

Массив данных, содержащий информацию о солнечных пятнах, имеет табличный формат (таблица 1.1):

Таблица 1.1 

Ежедневные измерения комплексного излучения солнечного диска в 2800 МГц (длина волны 10,7 см) производятся Национальным исследовательским советом Канады с 1947 г. До 31 мая 1991 г. наблюдения проводились в Обсерватории Алгонкинского радио, около Оттавы. Далее программа была передана Доминион радио астрофизической обсерватории около Пентиктона в Британской Колумбии. С 1 июня 1991 года данные берутся из этого места.

Таблицы содержат сведения о потоках от всего солнечного диска в частоте 2800 МГц в единицах 10-22 Вт/(м2МГц). Во избежание десятичных знаков каждый показатель был умножен на 10. В итоге получены три вида потока – наблюдаемый, скорректированный и абсолютный. Из них наблюдаемый – наименее точный, так как он содержат флуктуации до 7 %, которые возникают с изменением расстояния Солнце – Земля. Скорректированные потоки не имеют такого изменения; числа в этих таблицах, равные потоку энергии, полученному датчиком, рассчитаны для средних расстояний между Солнцем и Землей. Наконец, абсолютные потоки содержат меньше всего ошибок, здесь каждое скорректированное значение умножается на 0,90, чтобы компенсировать погрешность антенны и волн, отраженных от Земли.

Данные сведены в таблицу в двух формах: «наблюдаемый поток» (S), и «скорректированный поток» (Sa). Первый – фактические измеренные значения – зависит от изменения расстояния между Землей и Солнцем весь год, тогда как второй масштабируется в стандартном расстоянии. Значения наблюдаемого потока полезны в физике ионосферы и других земных последствий солнечной активности. Скорректированные потоки более точно описывают поведение Солнца.

1.2.1. Динамика гелиофизических факторов

Временная изменчивость солнечной активности, выраженная количеством солнечных пятен и плотностью потока радиоизлучения на частоте 2800 МГц, представлена на рис. 1.1. Ход двух кривых очень похож, он отображает 11-летний цикл, с начала 1996 года значения увеличиваются, достигнув максимума в середине исследуемого периода, затем постепенно начинают уменьшаться. Максимум числа солнечных пятен (170) приходится на середину 2000 года, а максимум плотности потока (2350) – на начало 2002-го.

Рис. 1.1. Многолетняя среднемесячная изменчивость солнечных пятен и плотности радиоизлучения на частоте 2800 МГц

1.2.2. Спектральный анализ гелиофизических параметров

Рис. 1.2 показывает десятичный логарифм спектральной плотности солнечных пятен. График содержит большое количество периодичностей повторения явлений: 13 лет, 12 месяцев, 7,43 месяца, 6, 4,3, 3,7 и 2,74 месяца. Эти периоды синхронны со стационарной летальностью больных Санкт-Петербурга, описанной в главе 10 настоящей книги.

Рис. 1.2. Десятичный логарифм спектральной плотности динамики солнечных пятен

1.3. Основные параметры ионосферы и сопряженные с ними факторы

Возрастание солнечной активности приводит ко многим эффектам, поэтому ионосферное распространение может испытывать различные кратковременные возмущения. Во время некоторых геомагнитных бурь, называемых ионосферными, может происходить разрушение ионосферы, что приводит к различным эффектам. Как правило, затрагивается распространение коротких волн через ионосферную область F (на высоте около 300 км). Эти возмущения нарушают электронную конфигурацию ионосферы и вызывают ухудшение или даже полное исчезновение прохождения радиоволн.

Геомагнитные возмущения, приводящие к возникновению авроры, могут фактически улучшить распространение на высокочастотных КВ-диапазонах. Наряду с видимой авророй может возникать и радиоаврора. Это своего рода флуоресценция ионосферного слоя Е, которая приводит к возникновению тенденции отражения радиосигналов на частотах примерно выше 20 МГц.

Существуют и ионосферные бури. Ионосферные бури вызываются различными процессами на Солнце, такими как солнечные вспышки, корональные дыры и корональные извержения масс. Бури длятся от нескольких часов до нескольких дней и иногда повторяются с периодом 27,5 дня, равным периоду собственного вращения Солнца.

Сила бури отмечается индексами А и К, которые указываются в радиовещательных сигналах геофизической тревоги Geoalert, передаваемых станциями WWV и WWVH, принадлежащими Национальному институту стандартов и технологий США (NIST) в г. Боулдер, шт. Колорадо. Радиостанция WWV располагается в окрестностях Форт-Коллинза (Ft. Collins), а радиостанция WWVH – в Кауаи, Гавайи. Обе станции осуществляют непрерывное вещание на частотах 2,5; 5; 10 и 15 МГц; кроме того, WWV вещает и на 20 МГц. Информация обновляется каждые три часа и передается станцией WWV на 18-й минуте каждого часа, а станцией WWVH – на 45-й минуте каждого часа. Ионосферные и магнитные возмущения могут сопровождаться видимой авророй.

Индекс К представляет собой результат трехчасовых магнитометрологических измерений интенсивности и направления геомагнитного поля и сравнения их с этими же характеристиками в геомагнитно «спокойных» условиях. Измерения индекса К осуществляются во многих местах земного шара и тщательно согласуются с геомагнитными характеристиками места, в котором проводятся измерения. Индексы К станции Боулдер (Boulder) измеряются по шкале от 0 до 9.

Индекс А дает усредненную меру геомагнитной активности, полученную из ряда физических измерений, долговременную картину геомагнитной активности. Он выводится из индексов К и принимает значения от 0 до 400.

Многие организации принимают участие в предсказаниях солнечных циклов и в мониторинге солнечной активности. Например, солнечная и гелиосферная обсерватория (SOHO) – это реализованный совместный проект Европейского космического агентства (ESA) и Национального управления по океану и атмосфере (NOAA). Эта космическая станция – наиболее претенциозный проект, позволяющий осуществлять непрерывное наблюдение за Солнцем. Реализация проекта позволяет лучше понять взаимодействие между Солнцем и Землей, включая солнечный ветер.

Солнечные, геомагнитные и ионосферные данные в Интернет. Огромное число данных о солнечной, геомагнитной и ионосферной активности и об условиях распространения волн можно найти во Всемирной паутине (World Wide Web). Большинство web-сайтов спонсируются хорошо известными академическими, педагогическими и правительственными организациями:

1 2 3 4 5 6 7 8 9 10 ... 22
Перейти на страницу:
На этой странице вы можете бесплатно скачать Медицинские информационные системы: многомерный анализ медицинских и экологических данных - Михаил Лушнов торрент бесплатно.
Комментарии