Магистр рассеянных наук (математическая трилогия). - Владимир Артурович Левшин
Шрифт:
Интервал:
Закладка:
— Глупая Единичка! — сказал я. — Неужели ты думаешь, что меня могут затруднить такие детские задачки? Ясно, раз наш поезд шёл вдвое быстрее, то он оказался при встрече дальше от Москвы, чем товарный.
Единичка захлопала в ладоши и заскакала на одной ноге. Вероятно, я угодил ей своим ответом. Впрочем, кто её знает? Легче решить самую трудную задачу, чем разобраться в этом странном ребёнке. Да и разбираться-то было некогда, потому что мы вышли на новую площадь, которая называлась Прямоугольник. Прямоугольную площадь пересекали по диагоналям две пешеходные дорожки.
Единичке захотелось узнать, кто из нас быстрее бегает. Она отвела меня на конец одной диагонали, сама стала у конца другой, и по команде «Старт!» мы побежали к центру площади, к месту, где обе диагонали пересекаются. Я пробежал только половину пути, а Единичка уже размахивала шапочкой у финиша. Не успел я с ней поравняться, как она сейчас же захотела повторить забег, предложив мне фору четверть диагонали. Разумеется, я решительно отказался.
И тут меня поразило одно совершенно неожиданное обстоятельство. Я знаю, да и все это знают, что у любого квадрата диагонали взаимно перпендикулярны, то есть образуют при пересечении прямой угол. А в этом прямоугольнике на глаз видно, что угол между диагоналями совсем не прямой. Что за наваждение!
Опять не к месту вмешалась Единичка.
— Так то в квадрате, а не в прямоугольнике.
Ох уж эти мне дети! Они не имеют никакого понятия о логике. К тому же — о логике математической. Ведь квадрат — это тоже прямоугольник. А у квадрата диагонали взаимно перпендикулярны. Значит, и у прямоугольника они должны быть тоже взаимно перпендикулярны. Против логики не пойдёшь!
— Логика, логика, а диагонали здесь всё-таки не перпендикулярны! — захихикала Единичка.
— Если факты противоречат логике, тем хуже для фактов, — возразил я.
Но тут Единичка снова вспомнила про поезд, и мы стремглав помчались на вокзал. А когда примчались… Когда мы туда примчались, я ахнул, закрыл лицо руками и стал думать. О чём? Но об этом я расскажу в следующей главе.
Второе заседание КРМ
решено было совместить с прогулкой на речном трамвае. Уж там-то, на воде, никому не придёт в голову называть математику сухой наукой!
День был великолепный. Мы удобно расположились на носу катера и тотчас же после чтения второй главы диссертации приступили к разбору ошибок.
— Итак, — начал Олег, отложив рукопись, — Магистр и его спутница Единичка прибыли в город Пифагорск.
— Вот вам и первая нелепость! — с ходу выпалил Сева. — Такого города нет.
— То есть как это? — возмутилась Таня. — Может, скажешь, и Лилипутии нет? И Швамбрании тоже?
— Этак окажется, что и моей Карликании не существует, — обиделся Нулик, — а я там как-никак живу.
Таня засмеялась.
— Слушай, Сева, а ты, случайно, не родственник Магистра? Ведь и он, помнится, утверждал поначалу, что города Пифагорска нет. Чужих выдумок он не понимает, а сам, между прочим, выдумывать мастер. Вот и Пифагора назвал древнеиндийским, а не древнегреческим учёным, а потом выкупал его в ванне и заставил кричать: «Эврика!» Хоть всем известно, что этот казус произошёл не с Пифагором, а с Архимедом.
— Какой ещё такой казус? — захихикал Нулик. — Казус в ванне!
— Пора бы уж знать, — пристыдила его Таня. — Однажды Архимед купался в ванне и вдруг обратил внимание на то, что тело его в воде стало легче. Тогда-то он и закричал «Эврика!», то есть «Нашёл!».
— Шарлатан ваш Архимед! — рассердился Нулик. — Что можно найти в ванне?
— Что? Знаменитый закон, вот что. Закон о том, что всякое тело, погружённое в жидкость, теряет в весе ровно столько, сколько весит вытесненная им жидкость.
— Не знаю, не знаю, — проворчал президент, — может, это и так, но что же делать, если у Магистра плохая память?
— Что верно, то верно, — согласилась Таня. — Он иногда говорит такое… Кольцевое шоссе у него прямое как стрела. Куб — фигура, а не геометрическое тело…
— А дальше ещё хуже! — подхватил Сева. — Дома у него расположены по кругу, а сквер между этими домами назван окружностью. А ведь на самом деле всё наоборот. Окружность — линия, все точки которой равно удалены от центра, а круг — часть плоскости, ограниченная этой линией. Мало того: в самом центре этого круга, как уверяет Магистр, были воткнуты две палочки. Но ведь у круга всего один центр!
— Это что! — перебила Таня. — Магистр умудрился спутать секторы с сегментами. Понимаешь, Нулик?
Президент утвердительно кивнул головой.
— Что за вопрос! Но ты всё-таки намекни, какая между ними разница.
— Радиус соединяет любую точку окружности с центром. Если провести несколько радиусов, то они разделят круг на секторы. А для того чтобы получить сегмент, достаточно отсечь часть круга одной прямой линией.
— Очень хорошо, — обрадовался Нулик. — Сейчас мы это проверим на практике.
Он вынул из пакета миндальное пирожное, мигом отхватил ножом четыре сегмента (для нас), а серединку съел сам напополам с Пончиком.
— А теперь вот что, — сказала Таня, проглотив свою долю. — Магистр совсем не разбирается в садоводстве. Не могли и подснежники, и пионы, и хризантемы цвести одновременно.
— Конечно, не могли, — согласился Нулик. — Но что наверняка правильно, так это то, что цветы в Пифагорске рвать разрешается.
— Да, но с оговоркой: «Знайте меру!» — как бы вскользь проронил Олег.
— Пожар! — вдруг закричал Нулик. — Башня горит!
Башня оказалась колокольней Ивана Великого. Её золотой купол действительно так и пылал на солнце. И опять пришлось нам сделать небольшой перерыв: президент заявил, что не может в одно и то же время обсуждать диссертацию и любоваться видом.
Но вот катер нырнул под арку моста, и Олег ловко возвратил нас к спору между Магистром и Единичкой, которая утверждала, что улица «0,6» длиннее улицы «0,11».
— На этот вопрос отвечу я, — заявил Нулик. — Ведь здесь замешан я