Категории
Самые читаемые
Лучшие книги » Справочная литература » Справочники » Разработка устройств на основе цифровых сигнальных процессоров фирмы Analog Devices с использованием Visual DSP++ - Олег Вальпа

Разработка устройств на основе цифровых сигнальных процессоров фирмы Analog Devices с использованием Visual DSP++ - Олег Вальпа

Читать онлайн Разработка устройств на основе цифровых сигнальных процессоров фирмы Analog Devices с использованием Visual DSP++ - Олег Вальпа

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 52
Перейти на страницу:

Сигнал -RESET обеспечивает сброс процессора в исходное состояние. Этот сигнал должен находиться в активном низкоуровневом состоянии при включении и перезагрузке процессора в течение не менее пяти тактовых периодов внешней синхронизации процессора. Обычно для надежного сброса процессора этот сигнал удерживается в активном состоянии не менее нескольких микросекунд. Формирование сигнала сброса в схеме возможно от любого из двух источников. Первый источник этого сигнала реализован на зарядной цепочке R1, CP1. В момент подачи питания на схему, конденсатор CP1 разряжен и на нем удерживается низкий потенциал в течении времени его заряда, достаточного для приведения процессора в исходное состояние. Диод VD1 обеспечивает быстрый разряд этого конденсатора в момент отключения или кратковременного пропадания питания. Кнопка SB4 предназначена для принудительного сброса процессора вручную. Резистор R2 ограничивает ток разряда, предохраняя контакты кнопки от образования искр, и устраняет дребезг контактов совместно с конденсатором CP1. Вторым источником сигнала сброса является сигнал — RESI с разъема XU1, который буферизуется шинным повторителем D4.1 и поступает на микросхему D6. С помощью элементов D6.3 и D6.4 оба сигнала объединяются в один сигнал сброса процессора в инверсном (-RESET) и неинверсном виде (RESET). Наличие неинверсного сигнала требуется для сброса других микросхем с активным высокоуровневым входом сброса.

Сигнал -ERESET и сигналы на выводах 59…65 и 67 процессора предназначены для подключения к нему специального аппаратного эмулятора EZ-ICE, который можно приобрести через представителей фирмы Analog Device в России. Выводы эмулятора подключены к разъему XEZ в соответствии с рекомендациями по применению данного сигнального процессора. Однако на практике вполне можно обходиться и без этого эмулятора.

Следующая группа сигналов -IRQL0, -IRQL1, -IRQ2 и -IRQE отвечает за передачу процессору внешних прерываний. В качестве источников прерываний могут выступать различные микросхемы, датчики, кнопки и т.п. Так, к сигнальному выводу -IRQE подключена кнопка SB5 через цепочку устранения дребезга контактов R22 и CP4. Резистор R23 предназначен для удержания сигнала прерывания в пассивном состоянии. В дальнейшем с ее помощью можно будет принудительно вызывать прерывание процессора при необходимости.

Следующие три сигнала обеспечивают запрос и предоставление внешней шины процессора другим внешним устройствам. На схеме сигнал запроса шины -BR используется только при подключении к схеме эмулятора EZ-ICE и подключен к разъему XEZ. Этот сигнал подтянут к шине питания для приведения его в пассивное состояние. Выходной сигнал -BG, подтверждающий предоставление шины процессором, также подключен к разъему XEZ. Сигнал -BGH не используется и остается не подключенным.

Далее следует группа важных сигналов порта прямого доступа к памяти процессора. Это шестнадцать мультиплексированных сигналов шины адреса данных IAD0–IAD15 и сигналы управления IACK, -IWR, -IRD, -IS, IAL. Данный порт можно использовать для загрузки программ и данных во внутреннюю память процессора и, кроме того, читать содержимое памяти процессора во время его работы. Это позволяет обходиться без эмулятора EZ-ICE, облегчает отладку программ и дает большую гибкость при разработке многопроцессорных схем. На схеме все эти сигналы подключены через буферные микросхемы D2, D3, D4.1, D5.1, D5.5 и D5.5 к внешнему разъему XU1. В дальнейшем мы рассмотрим специальный адаптер, который позволит нам оперативно загружать программы в процессор, читать и записывать данные в его память и окажет большую помощь в изучении самого процессора и освоении его системы команд и способов программирования. Цепочка элементов R4 и C11 фильтрует высокочастотные импульсы, проникающие на чувствительный вход IAL процессора, обеспечивая тем самым повышенную помехозащищенность. Резисторные сборки RN1 и RN2 подтягивают сигналы порта IDMA и прерываний к высокому пассивному уровню.

Следующие две группы сигналов последовательных портов SPORT0 и SPORT1 обеспечивают работу с последовательными устройствами. К порту SPORT0 в схеме подключен кодек DA1 типа MC14LC5480, который содержит в себе кодер и декодер с фильтрами и компандер. В отличие от аналого-цифрового и цифро-аналогового преобразователей, он отличается тем, что выполняет преобразование сигналов по А-типу или μ-типу. Фактически оба эти типа преобразования являются аппроксимацией логарифмической функции с различной степенью приближения. Они активно применяются в телекоммуникационных системах для цифрового преобразования и сжатия информации с максимальным сохранением соотношения сигнал-шум. Для этого аналоговые сигналы малой амплитуды дискретизируются чаще. Для сжатия цифровой информации используется функция компандирования, встроенная в кодек и сигнальный процессор. С помощью этой функции производится прямое и обратное преобразование 13- или 14-разрядных слов в 8-разрядные, за счет нелинейного прореживания. В цифровых каналах связи используются именно такие 8-битные данные. Для нормальной работы кодеку необходимы сигналы синхронизации и кадровые стробы приемника и передатчика. Эти сигналы формируются портом SPORT0 на выводах SCLK0, RFS0 и TFS0 соответственно. Все перечисленные сигналы синхронизации и стробов программируются в процессоре по направлению, частоте, длительности и фазовому сдвигу. Цифровые данные приемника и передатчика порта транслируются на кодек по сигнальным выводам DR0 и DT0 соответственно. Помимо перечисленных узлов, кодек содержит в себе операционные усилители и источник опорного напряжения для смещения напряжения на входах усилителей относительно нулевого потенциала. Аналоговый сигнал на кодек заведен с разъема XIN типа тюльпан, через развязывающий конденсатор C16.

Стабилитроны VS1 и VS2 защищают вход кодека от сигналов большой амплитуды. Резисторы R9 и R10 определяют коэффициент усиления входного сигнала. Опорное напряжение подведено к неинверсному входу кодека через резистор R12. Цепочка R11-C17 корректирует смещение по высоким частотам. Конденсатор C18 является фильтрующим. Оцифрованный сигнал поступает в процессор на вход DR0 для обработки или цифровой записи. В свою очередь, процессор посылает в кодек цифровые сигналы для последующего их преобразования в аналоговый сигнал. После цифро-аналогового преобразования сигнала DT0 от процессора выходной аналоговый сигнал с кодека поступает через ограничительный резистор R14 на разъем XOUT. Кроме того, этот же сигнал поступает на низкочастотный усилитель, выполненный на транзисторах VT1 и VT2. В нагрузку усилителя, через развязывающий конденсатор CR3, включена миниатюрная динамическая головка BA1. Она позволит прослушивать сигналы, генерируемые процессором через кодек. Резисторы R13 и R16 определяют коэффициент усиления всего каскада, а резистор R15 обеспечивает необходимое смещение на базах транзисторов.

Выводы порта SPORT1 являются многофункциональными. Они могут быть запрограммированы как на работу с последовательными устройствами подобно порту SPORT0, так и в альтернативном режиме как флаги входа-выхода и входы прерывания. В нашей схеме используется второй способ их применения. Вывод 51 порта будет работать как выход, а вывод 55 как вход. Кроме того, задействован вход прерывания IRQ1, для формирования прерывания процессора при поступлении информации по сигнальному выводу FI. Эти выводы задействованы для организации последовательного порта RS-232 или проще — компьютерного СОМ порта. Для этого они подключены к микросхеме преобразования уровней DA2. Эта микросхема преобразует ТТЛ уровни сигнала в уровни стандарта RS-232. Конденсаторы C12–C15 обеспечивают работу внутренних умножителей напряжения в микросхеме. Сигналы порта RS-232 выведены на девятиштырьковый разъем XRS1. Назначение сигналов на этом разъеме соответствует стандарту, принятому для персональных компьютеров IBM PC. В дальнейшем к этому порту можно подключить компьютер, с помощью нуль-модемного кабеля, для загрузки обучающих программ с помощью программного пакета EZ-KIT Lite, распространяемого фирмой Analog Device.

Сигналы А0–А13 являются адресными и предназначены для адресации внешней памяти или устройств ввода-вывода. В схеме они подключены к адресным выводам микросхемы постоянной памяти D7, а некоторые из них, к дешифратору устройств ввода-вывода D9.

Сигналы D0–D23 предназначены для передачи данных и для адресации. Младшие восемь бит этой шины участвуют в обмене данными только с расширенной памятью. В нашей схеме эта память не подключена и, соответственно, сигналы D0–D7 не задействованы. Разряды D8–D15 используются для передачи данных при обращении к байтовой памяти BDMA.

В нашей схеме эту роль выполняет микросхема постоянной флэш-памяти D7. Наконец, старшие разряды этой шины D16–D23 выполняют двоякую роль. При обращении к байтовой памяти они несут функцию старших адресных линий, а при обращении к устройствам ввода-вывода являются старшими разрядами шины данных.

1 2 3 4 5 6 7 8 9 10 ... 52
Перейти на страницу:
На этой странице вы можете бесплатно скачать Разработка устройств на основе цифровых сигнальных процессоров фирмы Analog Devices с использованием Visual DSP++ - Олег Вальпа торрент бесплатно.
Комментарии