7. Физика сплошных сред - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Аналогично, для поля, направленного по оси у, мы можем написать
Рх=aхуЕy, Ру=aууЕу, Рz=aгуЕу, (31.2)
а для поля в z-направлении
Px=axzEz, Py=ayzEz Pz=azzEz. (31,3)
Дальше мы говорим, что поляризация линейно зависит от поля; поэтому если у нас есть электрическое поле Е с компонентами х и у, то x-компонента поляризации Р будет суммой двух Рх, определенных уравнениями (31.1) и (31.2), ну а если Е имеет составляющие по всем трем направлениям х, у и z, то составляющие поляризации Р должны быть суммой соответствующих слагаемых в уравнениях (31.1), (31.2) и (31.3). Другими словами, Р записывается в виде
Диэлектрические свойства кристалла, таким образом, полностью описываются девятью величинами (axx,, axy,,axz,ayz , ...), которые можно записать в виде символа aij. (Индексы i и j заменяют одну из трех букв: х, у или z.) Произвольное электрическое поле Е можно разложить на составляющие Еx, Еyи Еz. Зная их, можно воспользоваться коэффициентами aijи найти Рх, Рy и Pz, которые в совокупности дают полную поляризацию Р. Набор девяти коэффициентов aijназывается тензором — в данном примере тензором поляризуемости. Точно так же как три величины (Ех, Еу, Еz) «образуют вектор Е», и мы говорим, что девять величин (aхх, aху, ...)«образуют тензор aij».
§ 2. Преобразование компонент тензора
Вы знаете, что при замене старых осей координат новыми х', у' и z' компоненты вектора Ех', Еу', Ег'тоже оказываются другими. То же самое происходит и с компонентами Р, так что для разных систем координат коэффициенты aijоказываются различными. Однако вполне можно выяснить, как должны изменяться а при надлежащем изменении компонент Е и Р, ибо, если мы описываем то же самое электрическое поле, но в новой системе координат, мы должны получить ту же самую поляризацию Р. Для любой новой системы координат Px' будет линейной комбинацией Рх, Рy' , и Рz':
Рx’=аРх+bРу+сРz,
и аналогично для других компонент. Если вместо Рх, Рyи Рzподставить их выражения через Е согласно (31.4), то получится
Теперь напишите, как выражается Ех, Еyи Ezчерез Еx' , Еy'и Еz' , например,
Ex = a'Ex'+b'Ey'+c'Ez' ,
где числа а', b' и с' связаны с числами а, b и c, но не равны им. Таким образом, у вас получилось выражение Рх'через компоненты Ех', Еy'и Ez' , т. е. получились новые aij. Никаких хитростей здесь нет, хотя все это достаточно запутано.
Когда мы говорили о преобразовании осей, то считали, что положение самого кристалла фиксировано в пространстве. Если же вместе с осями поворачивать и кристалл, то a не изменяются. И обратно, если по отношению к осям изменять ориентацию кристалла, то получится новый набор коэффициентов а. Но если они известны для какой-то одной ориентации кристалла, то с помощью только что описанного преобразования их можно найти и для любой другой ориентации. Иначе говоря, диэлектрические свойства кристалла полностью описываются заданием компонент тензора поляризуемости aij. в любой произвольно выбранной системе координат. Точно так же как вектор скорости v = (vx, vy , vz) можно связать с частицей, зная, что три его компоненты при замене осей координат будут изменяться некоторым определенным образом, тензор поляризуемости aij, девять компонент которого при изменении системы осей координат преобразуются вполне определенным образом, можно связать с кристаллом.
Связь между Р и Е в уравнении (31.4) можно записать в более компактном виде:
где под значком i понимается какая-то из трех букв х, у или z, а суммирование ведется по j=x, у и z. Для работы с тензорами было придумано много специальных обозначений, но каждое из них удобно для ограниченного класса проблем. Одно из таких общих соглашений состоит в том, что можно не писать знака суммы (S) в уравнении (31.5), понимая при этом, что когда один и тот же индекс встречается дважды (в нашем случае j), то нужно просуммировать по всем значениям этого индекса. Однако, поскольку работать с тензорами нам придется немного, давайте не будем осложнять себе жизнь введением каких-то специальных обозначений или соглашений.
§ 3. Эллипсоид энергии
Потренируемся теперь в обращении с тензорами. Рассмотрим такой интересный вопрос: какая энергия требуется для поляризации кристалла (в дополнение к энергии электрического поля, которая, как известно, равна e0Е2/2 на единицу объема)? Представьте на минуту атомные заряды, которые должны быть перемещены. Работа, требуемая для перемещения одного такого заряда на расстояние dx, равна qExdx, а если таких зарядов в единице объема содержится N штук, то для перемещения их требуется работа qExNdx. Но qNdx равно изменению дипольного момента единицы объема dPx. Так что работа, затраченная на единицу объема, равна
ExdPx.
Складывая теперь работы всех трех компонент, найдем, какой должна быть работа в единице объема:
E·dP.
Но поскольку величина Р пропорциональна Е, то работа, затраченная на поляризацию единицы объема от 0 до Р, равна интегралу от E·dP. Обозначая ее через ир, можно написать
Теперь можно воспользоваться уравнением (31.5) и выразить Р через E. В результате получим
Плотность энергии ир — величина, не зависящая от выбора осей, т. е. скаляр. Таким образом, тензор обладает тем свойством, что, будучи просуммирован по одному индексу (с вектором), он дает новый вектор, а будучи просуммирован по обоим индексам (с двумя векторами), дает скаляр.
Тензор aijна самом деле нужно называть «тензором второго ранга», ибо у него два индекса. В этом смысле вектор, у которого всего один индекс, можно назвать «тензором первого ранга», а скаляр, у которого вообще нет индексов,— «тензором нулевого ранга». Итак, выходит, что электрическое поле Е будет тензором первого ранга, а плотность энергии up — тензором нулевого ранга. Эту идею можно распространить на тензоры с тремя и более индексами и определить тензоры, ранг которых выше двух.