- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Млечный Путь, 2012 №02 - Журнал «Млечный Путь»
Шрифт:
Интервал:
Закладка:
Итак, даже в «классических случаях», описываемых «нашим» четырехмерным пространством-временем, мы, оказывается, каким-то образом ВЫБИРАЕМ среди множества РЕАЛЬНЫХ форм существования объектов только одну и живем в этом своем выборе!
Каков механизм этого выбора, как конкретно описать его математически — это и есть «прикладные вопросы», над которыми нужно работать. При этом, как заметил А. К. Гуц, «главная трудность состоит в том, что сама гладкость как-то не описывается без гладкости. Чего-то мы пока не понимаем».
Но вывод из «абстрактно-математических» результатов дифференциальной топологии вполне очевиден: физическое многомирие с математической точки зрения возможно.
Это ясно и самому Р. Пименову, который так говорит о мировоззренческих следствиях своего анализа применимости дифференциальных уравнений для описания реальности: «А это означает, что все, что писалось о детерминизме в XVIII–XX веках, НАДО ЗАЧЕРКНУТЬ. Ведь если у нас нет критерия „абсолютно различить“ гладкую траекторию от негладкой… то спрашивается, по каким же траекториям переносится „настоящее“ физическое воздействие?.. Вся идеология использования дифференциальных уравнений для детерминации будущего на основе настоящего и прошлого рушится из-за релятивизации гладкости… Детерминизм не был „выведен логически“ или „доказан математически“. Мы всего лишь ВЕРИЛИ В ДЕТЕРМИНИЗМ».
Со времен Лапласа принято считать, что у всякого следствия есть однозначная причина. «Классический математик» переводит это на математический язык — у любой функции есть дифференциал. В этом и состоит сущность лапласовского детерминизма.
После осознания сказанного Р. И. Пименовым, этот детерминизм, как мировоззренческий принцип, перестает быть всеобщим.
И круг задач, которые подчиняются парадигме дифференциальных уравнений, уже не всеобъемлющ. А среди первых разделов физики, актуальные интересы которых выходят за его пределы, следует указать на современную космологию.
Причинность в космологии
Тебе, Чей Сумрак был так ярок,Чей Голос тихостью зовет, —Приподними небесных арокВсе опускающийся свод.
А.БлокБудучи именно космологом и понимая, что вслед за ним пойдут другие исследователи, не столь искушенные в математике, Р. И. Пименов подчеркивает: «Предупредим одно возражение, недоразумение, которое может родиться у нематематика, знакомого все же с достижениями современной физической космологии. В последней оживленно обсуждаются „сингулярности“, исследуются те или иные „особые точки“, где перестают быть применимыми методы дифференциальных уравнений. Может показаться, будто бы это и есть те самые „негладкие модели“, о которых мы пишем. Нет… Это особенности в УЖЕ СУЩЕСТВУЮЩЕЙ ГЛАДКОСТИ. Нынешняя космология может (при усилии) справиться с КОНЕЧНЫМ числом особых точек, тогда как нарождающаяся концепция… скорее склонна к моделям, где особых точек бесконечно много и где они распределены всюду плотно, т. е. НЕУСТРАНИМО. Прибегнув к несколько легкомысленному сравнению, скажем так: упоминание в современной космологии сингулярностей подобно выезду горожан-туристов на лоно природы, максимум с одной-двумя ночевками и с прихваченными собою дарами города. А теория „непрерывного-не-гладкого“ подобна безвыездной жизни в тайге от рождения».
Это было написано 11 мая 1988 г. в Сыктывкаре, вдалеке от крупных научных центров, где он, как мы знаем, оказался совсем не по своей воле. Тем не менее «общий план» поля научного действа Р. И. Пименов видел удивительно ясно — современные ему космологические исследования в своем большинстве действительно были подобны «выезду горожан-туристов на лоно природы…»
Но в отдельных точках этого поля уже тогда возникли удивительные ростки новой теории — космологической инфляции. С 1980 года ее развивали известный советский физик А. А. Старобинский, американец А. Гут и, особенно интенсивно и плодотворно, скромный и робкий в те времена сотрудник ФИАН им. П. Н. Лебедева, А. Д. Линде. Его работы тех времен сегодня — космологическая классика.
И почти через 30 лет после оценки Р. И. Пименова, 10 июня 2007 года, в переполненном конференц-зале ФИАН им. П. Н. Лебедева, Андрей Дмитриевич Линде — теперь уже знаменитый космолог, профессор физики Стэнфордского университета — читал лекцию о сегодняшнем состоянии этой теории. В ней он, в частности, рассказывал о новом космологическом объекте, особенно ярко «проявившемся» в ходе развития этой теории — мультиверсе, или физическом многомирии. Вот как представил Андрей Дмитриевич один из вариантов «энергетической карты» этого объекта:
Комментируя этот слайд, А. Д. Линде сказал: «Каждый из этих пиков на самом деле является экспоненциально большой Вселенной, и в каждой из них свои законы физики, и они все еще продолжают меняться».
Нет, это не «миры Эверетта», не альтерверс. Это — мультиверс, один из четырех типологических видов физического многомирия по Тегмарку.
Не правда ли, этот «пейзаж Мироздания», увиденный современной космологией, по своему духу и настроению уже отчетливо напоминает то, о чем Револьт Иванович писал как о «безвыездной жизни в тайге от рождения»? Но ясно, что математическая «теория „непрерывного-не-гладкого“» многомирия будет еще сложнее. И в «математическом дворце» кроме башни дифференциальных уравнений с лапласовской причинностью появится новый архитектурный элемент, какая-нибудь «пименовская галерея», с которой будет легко и удобно рассматривать детали строения «мультиверса по Линде».
Дорога в тысячу ли…
Дорога в тысячу ли начинается с одного шага, — гласит пословица. Жалко, что от него не зависит дорога обратно, превосходящая многократно тысячу ли. Особенно отсчитывая от «о».
Одна ли тысяча ли, две ли тысячи ли…
И.БродскийЕе строительство, собственно, уже началось. Как сообщил мне А. К. Гуц, еще «в Кишеневе (1988) я сказал Пименову о мысли использовать топосы для описания гладкого пространства-времени. Мысль проста — не задавать гладкость — неясно как это делать без гладкости — а написать синтетическую аксиоматику, т. е. формальную теорию, среди множества моделей которой будут разные гладкие модели. Его реакция была скорее отрицательной: его обескуражила возможность безобразно большого числа моделей. Мультиверс — так сейчас это называется! Ему хотелось сделать все традиционными методами. Но он меня поддержал. Дал силы. Уже на обратном пути, в самолете я сделал первые наброски. Моя статья вышла уже после его смерти в ДАН СССР и стала первой статьей по применению топосов в теории относительности». И, как отмечает Александр Константинович, «возможно, неединственность гладкости — это путеводная звезда». С ним согласен и профессор С. В. Сипаров: «В ходе построения финслеровой теории анизотропного пространства-времени выявляется неизбежность перехода от привычных гладких функций к функциям более широкого класса». А. В. Коганов отмечает, что «в точке, где нет гладкости изменения параметров процесса, появляется возможность продолжать процесс многими способами, поскольку возможные касательные к траектории заполняют некоторый сектор пространства. И это дает математическую модель свободы волевого выбора пути».
Однако, с сожалением констатирует А. К. Гуц, «больно сложно здесь продвигаться». Сложно настолько, что за прошедшие десятилетия после пионерских работ Р. И. Пименова и А. К. Гуца первая книга о разнообразии гладкостей вышла только в 2007 г. в Сингапуре.
… Вот что я вижу в тексте статьи Р. И. Пименова сегодня. Разумеется, у другого читателя может возникнуть иное восприятие, ведь, как гласит пословица, «свой глазок — смотрок!». Возможно, я чего-то не понял, возможно даже, что и Револьт Иванович в чем-то ошибался. Уж очень сложен лабиринт, в который превратилась современная математика.
Но безусловно одно — эту статью следует читать внимательно и многим. Тем, кого я убедил, будет важно утвердиться в новом отношении к принципу причинности. Те, кто не согласился со мною, должны найти в первоисточнике опровергающие мои рассуждения аргументы. Увлечение же молодого читателя, еще только ищущего объект приложения своих интеллектуальных сил, на огромную стройку математического дома, туда, где после обучения и овладения необходимым «инструментарием», он смог бы самостоятельно трудиться на постройке «пименовской галереи», которой сегодня очень не хватает энтузиастов-профессионалов, я считаю одной из главных целей этой своей статьи.
Эссе Р. И. Пименова о проблеме выбора. И далеко не только в математике: и физик, и философ, и просто любой «думающий человек» постоянно сталкивается с ней и постоянно ее решает. И я ставлю читателя перед выбором: принять ли вызов, брошенный Револьтом Ивановичем парадигме детерминизма, или верить в то, что «слаб человек и от нас ничего не зависит — прошлые причины породили нынешнее настоящее и мостят дорогу в неизбежное будущее…»

