Мусорная ДНК. Путешествие в темную материю генома - Несса Кэри
Шрифт:
Интервал:
Закладка:
Когда мы смотрим на схематическое изображение информационной РНК (рис. 16.1), у нас может возникнуть представление, что зоны, кодирующие белок, и нетранслируемые области сильно отличаются друг от друга. Однако они нарисованы так исключительно для удобства восприятия, и в клетке выглядят по-другому. На уровне нуклеотидной последовательности они весьма схожи, ибо и те, и другие участки состоят лишь из нуклеотидных оснований РНК.
Для любого, кто хорошо понимает написанный по-английски текст, не составит труда расшифровать следующую строку:
Iwanderedlonelyasacloud[57]
Хотя все буквы образуют слитную цепочку без пробелов, нетрудно распознать, где начинаются и оканчиваются слова. То же самое и с клеткой: она способна различать нуклеотидные последовательности в нетранслируемых областях информационной РНК и в ее участках, кодирующих аминокислоты.
Трансляция информационной РНК для создания белка осуществляется в рибосомах (мы познакомились с этим процессом в главе 11). Информационная РНК пропускается через рибосому, причем первым, как нетрудно догадаться, в рибосому попадает начало этой молекулы. Ничего особенного не происходит, пока рибосома не прочтет определенную последовательность из тройки нуклеотидных оснований — АУГ (как упоминалось в главе 2, основание Т, имеющееся в ДНК, всегда заменяется в РНК на У — основание несколько иного состава[58]). Эта триада сигнализирует рибосоме: пора приступать к соединению аминокислот друг с другом, чтобы в итоге создать белок.
Иными словами, перед нами окажется подобие какого-нибудь такого куска текста (воспользуемся строчкой, приведенной выше):
dbfuwjrueahuwstqhwIwanderedlonelyasacloud
Прописная буква I — сигнал, что мы должны начать чтение нормальных слов. Она играет такую же роль, как и триплет АУГ, сигнализирующий, что пора начинать трансляцию.
У вышеупомянутых корейских и немецких пациентов, страдающих болезнью хрупких костей, в генах имеется участок, где нормальная ДНК-последовательность в нетранслируемой области изменена с АЦГ на АТГ (в РНК триплет АТГ отображается как АУГ). В результате рибосомы слишком рано приступают к созданию белковой цепочки. Это схематически показано на рис. 16.2.
Рис. 16.2. Мутация в нетранслируемой мусорной области в начале информационной РНК вводит рибосому в заблуждение. Рибосома слишком рано приступает к соединению аминокислот, создавая белок, в начале которого появится лишняя аминокислотная последовательность.
Это приводит к странному явлению: мусорная РНК становится РНК, кодирующей белок. Такой процесс добавляет 5 лишних аминокислот к началу нормального белка (см. рис. 16.3). Белок, играющий роль в развитии этого типа болезни хрупких костей, частично расположен внутри клетки, а частично — снаружи. Изменение в мусорной ДНК добавляет 5 лишних аминокислот к той части белка, которая находится вне клетки.
Пока не совсем ясно, почему эти 5 аминокислот вызывают симптомы данной болезни. Эксперименты, проведенные ранее на мышах, показали, что избыток или нехватка указанного белка приводят к дефектам в скелете. А значит, вполне очевидно: в организме должно вырабатываться строго необходимое его количество5. Пять лишних аминокислот пристроены к той части белка, которая, по-видимому, соединяется с другими белками — или с какими-то молекулами, подающими сигналы костным клеткам. Возможно, обладание лишними аминокислотами мешает мутантному белку правильно реагировать на эти сигналы, как если бы кто-нибудь залепил жевательной резинкой сенсор дымового датчика.
Рис. 16.3. Справа: U-образный белок с 5 лишними аминокислотами в начале (изображены звездочками). Вероятно, эти лишние аминокислоты оказывают влияние на то, какие еще молекулы могут взаимодействовать с данным белком.
Болезнь хрупких костей — не единственное заболевание человека, вызываемое мутациями в нетранслируемых областях, расположенных в начале гена. Мощный генетический компонент выявлен примерно в 10% случаев меланомы — агрессивной формы рака кожи. В ряде таких генетически мотивированных случаев удалось идентифицировать мутацию, которая по характеру действия очень напоминает мутацию, вызывающую болезнь хрупких костей. Упрощенно говоря, изменение единственного нуклеотидного основания в нетранслируемой области, расположенной в начале гена, порождает аномальный АУГ-сигнал в информационной РНК. Это, опять-таки, приводит к тому, что рибосома слишком рано приступает к формированию белковой цепочки. Появляется белок с лишними аминокислотами в начале. Он ведет себя аномально и повышает риск возникновения рака6.
Как всегда, нам следует опасаться нашей склонности видеть определенный рисунок явлений, исходя из слишком малого количества данных. Не все мутации в нетранслируемой области, находящейся в начале гена, порождают новые аминокислотные последовательности. Существует другой тип рака кожи, обычно гораздо менее агрессивный, чем меланома. Он называется базальной карциномой и также имеет значительную генетическую составляющую. У отца и дочери с этой разновидностью злокачественной опухоли выявили редкую мутацию.
Нетранслируемая область в начале определенного гена обычно содержит последовательность ЦГГ, повторенную 7 раз подряд. У отца и дочери имелась лишняя копия этого триплета ЦГГ. Наличие 8 повторов вместо обычных 7 вызвало предрасположенность к базальной карциноме. Данная мутация не изменила аминокислотную последовательность белка, кодируемого этим геном. Судя по всему, тройка лишних нуклеотидных оснований вносила изменения в то, как рибосома обрабатывает соответствующую информационную РНК. Характер этих изменений пока не выяснен, но понятен их конечный результат: больные клетки экспрессируют гораздо меньше определенного белка, чем нормальные7.
Рак — заболевание многостадийное, и хотя эта мутация в не-транслируемой области, находящейся в начале определенного гена, создала у пациентов предрасположенность к злокачественным новообразованиям, в клетках наверняка происходили и другие события, повлекшие за собой полномасштабный рак.
В начале была мутация
Однако мы уже знакомы с заболеванием, при котором наследуемая мутация в нетранслируемой области, расположенной в начале гена, напрямую приводит к патологии. Речь идет об умственной отсталости, вызываемой синдромом ломкой X-хромосомы (см. главу 1). Напомним, что это необычная мутация. При данной мутации ЦЦГ, последовательность из 3 пар нуклеотидных оснований[59], повторяется гораздо многократнее, чем следует. Менее 50 копий этого триплета, следующих подряд, считаются нормой; 50-200 копий обычно не ассоциируются с болезнью, но когда число повторов попадает в этот диапазон, ситуация становится весьма нестабильной. Биологическая аппаратура, копирующая ДНК в ходе подготовки к делению клетки, словно бы испытывает трудности при подсчете такого большого числа повторов. В результате добавляются новые повторы. Если такое происходит в гаметах, у ребенка, появившегося затем на свет, могут иметься многие сотни или даже тысячи повторов в соответствующем гене, и несчастное дитя будет отягощено синдромом ломкой X-хромосомы8.
Чем больше число повторов, тем ниже экспрессия гена, чья работа нарушается при синдроме ломкой X-хромосомы. Как вы уже видели, это происходит из-за взаимодействия гена с эпигенетической системой. Там, где в нашем геноме за Ц следует Г, к основанию Ц может пристраиваться небольшая модифицирующая группа. Обычно это происходит в тех зонах, где такой ЦГ-мотив присутствует в высоких концентрациях. Аномально огромное число повторов триплета ЦЦГ в «расширении» (зоне экспансии) гена синдрома ломкой X-хромосомы создает как раз такую среду. Нетранслируемая область перед ДНК-последовательностью этого гена становится у больных этим недугом обильно модифицированной, что и отключает ген. Организм пациента не вырабатывает никаких молекул информационной РНК на основе данного гена, а значит, ген не порождает никакого белка.
У пациентов с этой патологией наблюдается умственная отсталость, а также некоторые признаки, напоминающие симптомы аутизма (в частности, они испытывают проблемы с социальным взаимодействием). Одни больные гиперактивны, а у других периодически случаются припадки.
Разумеется, это заставляет задуматься, чем же обычно занимается в организме данный белок. Клиническая картина вырисовывается довольно сложная, а значит, этот белок, по всей видимости, вовлечен в действие самых разных биофизиологических процессов. Опыты показывают, что это, вероятно, так и есть.
Как мы видели в главе 2, белок, чье функционирование нарушается при синдроме ломкой X-хромосомы (для простоты будем называть его просто белком синдрома ломкой X-хромосомы), обычно образует комплекс с молекулами РНК, находящимися в мозге. Белок таргетирует около 4% молекул информационной РНК, экспрессируемых нейронами9. Связываясь с этими молекулами РНК, он действует как тормоз процесса их трансляции в белки. А это, в свою очередь, не позволяет рибосомам вырабатывать слишком много белковых молекул на основании данных, содержащихся в информационной РНК10.