- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Фундаментальные алгоритмы и структуры данных в Delphi - Джулиан Бакнелл
Шрифт:
Интервал:
Закладка:
Тасующие генераторы
И последний тип рассматриваемых нами генераторов, позволяющих получать "более случайные" числа, принадлежит к алгоритмам тасования. Здесь мы опишем генератор, реализованный на основе одного внутреннего генератора, хотя существуют и другие генераторы, аналогичным образом использующие два внутренних генератора.
Как и для аддитивного генератора, на первом этапе создается массив случайных чисел с плавающей запятой. Количество элементов в массиве не имеет особого значения. Кнут (Knuth) предложил использовать длины порядка 100. В нашем примере будет использоваться массив из 97 элементов - простое число, близкое к 100 [11]. (Кстати, применение простого числа не обязательно, оно просто выбрано в качестве примера.) Заполним массив случайными числами, полученными с помощью минимального стандартного генератора случайных чисел. Введем новую вспомогательную переменную и установим ее значение равным следующему случайному числу в последовательности.
При необходимости генерации следующего случайного числа с помощью тасующего генератора, вспомогательная переменная используется для вычисления случайного числа из диапазона от 0 до 96. Устанавливаем значение вспомогательной переменной равным значению элемента с вычисленным индексом и заменяем элемент новым случайным числом, полученным от внутреннего генератора случайных чисел. В качестве результата тасующего генератора используется значение вспомогательной переменной.
Листинг 6.11. Тасующий генератор
type
TtdShuffleGenerator = class(TtdBasePRNG) private
FAux : double;
FPRNG : TtdMinStandardPRNG;
FTable : array [0..96] of double;
protected
procedure sgSetSeed(aValue : longint);
procedure sgInitTable;
public
constructor Create(aSeed : longint);
destructor Destroy; override;
function AsDouble : double; override;
property Seed : longint write sgSetSeed;
end;
constructor TtdShuffleGenerator.Create(aSeed : longint);
begin
inherited Create;
FPRNG := TtdMinStandardPRNG.Create(aSeed);
sgInitTable;
end;
destructor TtdShuffleGenerator.Destroy;
begin
FPRNG.Free;
inherited Destroy;
end;
function TtdShuffleGenerator.AsDouble : double;
var
Inx : integer;
begin
Inx := Trunc(FAux * 97.0);
Result := FTable[Inx];
FAux := Result;
FTable[Inx] := FPRNG.AsDouble;
end;
procedure TtdShuffleGenerator.sgSetSeed(aValue : longint);
begin
FPRNG.Seed := aValue;
sgInitTable;
end;
procedure TtdShuffleGenerator.sgInitTable;
var
i : integer;
begin
for i := 96 downto 0 do
FTable[i] := FPRNG.AsDouble;
FAux := FPRNG.AsDouble;
end;
Принимая во внимание, что приведенный генератор возвращает точно те же случайные числа, что и минимальный стандартный генератор, очень интересно обнаружить, что при проверке его в тестовой программе регулярность не проявляется.
Кроме того, следует отметить, что длина цикла тасующего генератора равна длине цикла внутреннего генератора. Суть тасующего генератора заключается в том, что генерируемые им числа выдаются в другом порядке. Длину цикла можно изменить, если для получения индексов использовать еще один генератор случайных чисел. При этом длина цикла соответственно увеличится. (Та же длина цикла получается при использовании двух внутренних генераторов в комбинированном генераторе.)
Выводы по алгоритмам генерации случайных чисел
В предыдущем разделе были рассмотрены несколько достаточно простых генераторов случайных чисел. Наилучшие последовательности чисел позволяют получить два последних генератора, но, к сожалению, они выдвигают жесткие требования к памяти (так, например, последний алгоритм для хранения внутренней таблицы требует почти 800 байт). Самым плохим из рассмотренных был минимальный стандартный генератор, по крайней мере, что касается наличия регулярности в генерируемых им последовательностях случайных чисел, которую, как было показано, можно устранить с помощью алгоритма тасования. Если говорить о личных предпочтениях, то автору книги наиболее импонирует аддитивный генератор: он прост, использует только оператор сложения и генерирует хорошие последовательности статистически независимых случайных чисел. Единственным его недостатком является то, что при необходимости сохранения состояния генератора, нужно сохранять массив и два индекса, что, по сравнению с одним значением начального числа типа longint для минимального стандартного генератора, может показаться слишком огромным объемом данных.
Другие распределения случайных чисел
Если случайные числа используются для моделирования некоторого процесса, то вы можете обнаружить, что все рассмотренные выше генераторы случайных чисел не позволяют решить поставленную задачу. Это вызвано равномерным распределением генерируемых ими случайных чисел, т.е. вероятность возникновения одного случайного числа равна вероятности возникновения любого другого числа. При проведении моделирования бывают необходимы случайные числа, распределенные не по равномерному закону. Тем не менее, для вычисления последовательностей с другими распределениями можно использовать уже изученные нами генераторы случайных чисел.
Вторым по значимости после равномерного является нормальное или гауссово распределение. Оно также известно под названием распределение колокообразной формы, поскольку все точки данных расположены симметрично относительно среднего значения, причем, чем дальше точка от среднего значения, тем меньше вероятность ее получения. Нормальное распределение играет очень важную роль в статистике, где оно используется практически повсеместно. Например, рост людей 42-летнего возраста распределен в соответствии с нормальным распределением. Если попросить измерить длину стола нескольких человек с помощью линейки, длина которой намного короче, чем длина стола (другими словами, в случае существования элемента ошибки), полученный ответ будет соответствовать закону нормального распределения. И подобных примеров можно привести очень много.
Для нормально распределенного набора случайных чисел необходимо знать среднее значение и среднеквадратическое отклонение. Если эти параметры известны, генерация последовательности случайных чисел не представит особого труда. Для генерации мы будем использовать преобразование Бокса-Мюллера. Сами математические выкладки в этой книге не приводятся. Преобразование на своем входе требует два равномерно распределенных случайных числа, а на выходе генерирует два нормально распределенных случайных числа. Это не совсем удобно, поскольку нам, как правило, нужно только одно число за один раз. Однако второе число можно записать и выдать в качестве выходного значения при следующем вызове функции. Обратите внимание, что для многопоточных приложений предложенное решение приведет к тому, что функция не будет независимой от потоков, поскольку неиспользуемое значение придется хранить в глобальной переменной. Указанного недостатка можно избежать, если инкапсулировать вычисление случайных чисел в классе.
Обратите внимание, что мы исключаем тот редкий случай, когда оба равномерно распределенных случайных числа равны 0, и сумма их квадратов также равна 0, поскольку от этого значения в дальнейшем мы берем логарифм, который для 0 дает бесконечность. Поэтому подобной ситуации следует избегать.
Листинг 6.12. Случайные числа с нормальным распределением
var
NRGNextNumber : double;
NRGNextlsSet : boolean;
function NormalRandomNumber(aPRNG : TtdBasePRNG;
aMean : double;
aStdDev : double): double;
var
Rl, R2 : double;
RadiusSqrd : double;
Factor : double;
begin
if NRGNextlsSet then begin
Result := NRGNextNumber;
NRGNextlsSet := false;
end
else begin
{получить два числа, которые определяют точку внутри окружности единичного радиуса}
repeat
Rl := (2.0 * aPRNG.AsDouble) -1.0;
R2 := (2.0 * aPRNG.AsDouble) - 1.0;
RadiusSqrd := sqr(Rl) + sqr(R2);
until (RadiusSqrd < 1.0) and (RadiusSqrd > 0.0);
{применить преобразование Бокса-Мюллера}
Factor := sqrt(-2.0 * In(RadiusSqrd) / RadiusSqrd);
Result := Rl * Factor;
NRGNextNumber :=R2 * Factor;
NRGNextlsSet :=true;
end;
Result := (Result * aStdDev) + aMean;
end;
Еще одним важным распределением является экспоненциальное. Случайные числа, распределенные по этому закону, используются для моделирования ситуаций "времени прибытия", например, времени прибытия покупателей к кассе в супермаркете. Если в среднем покупатели подходят к кассе каждые x секунд, то время прибытия будет распределено по экспоненциальному закону со средним значением х.
Генерировать случайные числа, распределенные по экспоненциальному закону, достаточно просто. Не вдаваясь в математические подробности можно сказать, что если u - случайное число, распределенное по равномерному закону в диапазоне от 0.0 до 1.0, то e, которое равно
e = -x ln(u)
будет случайном числом, распределенным по экспоненциальному закону со средним значением х.
Листинг 6.13. Случайные числа, распределенные по экспоненциальному закону
function ExponentialRandomNumber( aPRNG : TtdBasePRNG;
aMeart : double): double;
var
R : double;
begin
repeat
R := aPRNG.AsDouble;
until (R <> );
Result := -aMean * ln(R);
end;
И снова обратите внимание, что исключается редкий случай, когда значение равномерно распределенного случайного числа равно 0, поскольку от него будет браться натуральный логарифм.

