- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Красота физики. Постигая устройство природы - Фрэнк Вильчек
Шрифт:
Интервал:
Закладка:
• Мантра потока для электромагнетизма гораздо ближе по духу оригинальным идеям Фарадея и Максвелла, чем наша предыдущая «геометрическая» мантра. Геометрическая мантра, напротив, ближе по духу тем идеям, которые привели Эйнштейна к его теории гравитации, т. е. к общей теории относительности. Эта гармония идей – великий дар. Она красива сама по себе. И, опять предвещая нашу следующую главу, она наводит на мысль о более глубоком единстве между взаимодействиями.
• По существу, как только геометрия – пространства-времени или пространств свойств – записывается в виде математического флюида, мы легко можем представить себе, что этот флюид течет и начинает жить своей жизнью.
Воплощения локальной симметрии
Теперь мы расшифровали и даже улучшили вторую строчку стихотворной строфы Уилера. Другими словами, мы обсудили, как силы направляют материю или как ян направляет инь. Чтобы завершить этот цикл идей, мы должны обсудить законы, которые управляют влиянием в противоположном направлении.
Точнее, наша задача состоит в следующем: как нам получить уравнения для кривизны пространства-времени и пространств свойств? Наш главный направляющий принцип, принцип локальной симметрии, настолько же красив, насколько глубок. Мы ввели эту идею ранее, в главе «Симметрия I», и теперь коротко повторим ее и после этого будем делать дальнейшие построения на ее основе.
Вспомним, что, разработав в 1905 г. специальную теорию относительности, Эйнштейн вскоре осознал, что ее невозможно совместить с теорией гравитации Ньютона. Он бился над этой проблемой целых десять лет, назвав их «годами тревожного поиска во тьме».
Эйнштейн достиг просветления, обнаружив подходящие уравнения для кривизны пространства-времени, и тем самым завершил новую теорию гравитации, общую теорию относительности. Он открыл их, когда сформулировал следующее требование: уравнения должны воплощать то, что он назвал общей ковариантностью, которая является вариантом локальной симметрии для пространства – времени.
Чтобы глубже понять локальную симметрию Главной теории, давайте начнем с того, что вспомним основную идею симметрии уравнений, которую мы ввели ранее в наших дискуссиях вокруг уравнений Максвелла. Мы говорим, что уравнение (или система уравнений) имеет симметрию, если существуют такие изменения, которые можно произвести над входящими в уравнение величинами, не изменив его содержания. Требование симметрии предоставляет нам способ нахождения особенных уравнений, поскольку большинство уравнений, выбранных случайно, не симметричны. Также, если говорить субъективно, это способ нахождения особенно красивых уравнений.
(Некоторые считают, что использование слова «симметрия» для описания свойства уравнения режет слух, поскольку оно кажется довольно далеким от обыденного значения этого слова. Если у вас есть такое затруднение, возможно, вам стоит иметь в виду слово «инвариантность» как дополнение или замену. После некоторого обдумывания я решил придерживаться слова «симметрия», так как оно глубоко укоренилось в литературе и это не осталось без отклика. Как бы вы это ни называли, главной идеей остается Изменение без изменений.)
Общепринятая, т. е. нелокальная, или (слово, которое буду использовать я) глобальная, симметрия физических законов обычно предполагает изменение Вселенной в целом, жестко и глобально. Например, мы постулируем, что содержание законов физики не изменится, если мы изменим положение всего, что в них встречается, на одну и ту же величину – скажем, сдвинем все на метр в одном и том же направлении, везде (и во все моменты времени). Если хорошо подумать об этом, вы поймете, что это точный (хотя возможно странный) способ сказать, что законы не знают предпочтительного положения в пространстве или, проще говоря, что законы везде принимают одну и ту же форму. Но, если мы поменяем положение некоторых предметов на бóльшую величину, чем положение других, мы изменим их взаимное расположение. Это, несомненно, поменяет содержание законов о силах – например, закон Ньютона для гравитации и похожий на него закон Кулона для электрических сил, – которые зависят от расстояний между объектами.
С локальной симметрией появляются преобразования, меняющиеся в пространстве и времени. Именно потому, что мы можем выбирать преобразования локально, не заботясь о Вселенной в целом, мы используем слово «локальная» при описании такой возможности. Рассмотрим снова вид трансформации, который мы только что обсудили в предыдущем абзаце: простой сдвиг всех объектов. На первый взгляд, как мы видели, симметрия законов физики может иметь место только в том случае, если мы предполагаем перемещение всего на одинаковое расстояние в одном и том же направлении. Если мы изменим расстояния между объектами, мы изменим законы их взаимодействия! Однако – а в этом как раз и заключается йога локальной симметрии – если у нас имеется метрический флюид и мы внесем нужные поправки в метрический флюид одновременно с перемещениями, то мы сможем сохранить расстояния между объектами и, следовательно, законы их взаимодействия неизменными!
Анаморфное искусство, как показано на вклейке EE, служит прекрасной метафорой – или, лучше сказать, моделью – для локальной симметрии. Как мы обсуждали ранее, начертательная/проективная геометрия – это искусство/наука об Изменениях без изменений, с которым (-ой) сталкиваешься, смотря на один и тот же объект (нет изменения) с разных точек зрения (изменения). Мы признаем, что многие различные картины могут изображать один и тот же предмет. Но мы можем получить более сложные образы, используя все тот же изначальный объект, если допустим присутствие искажающих сред – кривых зеркал, скажем, или линз и призм… или вообще некой структуры, которая меняется в пространстве от места к месту и искривляет световые лучи. Допуская присутствие таких сред, мы начинаем считать, что гораздо более широкий спектр изображений представляет один и тот же объект. Локальная симметрия – это та же самая идея, только примененная к уравнениям вместо предметов.
Условие локальной симметрии накладывает жесткие ограничения на наши уравнения. Мы требуем, чтобы версии этих уравнений, выглядящие очень искаженными, имели такие же следствия, как и оригиналы. Чтобы это было возможно, мы должны сделать предположение о том, что пространство-время (включая и любые пространства свойств, наложенные на него) заполнено соответствующими флюидами. В зависимости от того, как вы хотите интерпретировать эту ситуацию, вы можете сказать, что флюиды ответственны за видимые искажения или – альтернативно – компенсируют их. (Они ответственны за видимые искажения, если вы трактуете все от объекта к восприятию; они компенсируют видимые искажения, если вы трактуете все от восприятия к объекту!) В любом случае нам нужны эти заполняющие пространство-время флюиды, если мы хотим иметь локальную симметрию. И если мы хотим, чтобы они были успешными универсальными компенсаторами, флюиды должны обладать весьма особенными свойствами. Другими словами, они должны будут подчиняться очень специальным уравнениям.
Именно требование локальной версии специальной теории относительности позволило Эйнштейну получить уравнения для метрического поля, являющиеся основой общей теории относительности! И именно требование локальных версий вращений в пространствах свойств позволило Чжэньнину Янгу и Роберту Миллсу найти уравнения, носящие их имена и управляющие слабым и сильным флюидами. Янг и Миллс основывались на работе Германа Вейля, который показал, что уравнения Максвелла для электромагнитного флюида можно вывести таким образом.
Когда мы переходим от флюидов к соответствующим им субатомным частицам, или квантам, мы осознаем, что существование гравитонов, фотонов, виконов и цветных глюонов – квантов метрического, электромагнитного, сильного и слабого флюидов соответственно – и их свойств является неизбежным и исключительным следствием различных локальных симметрий. Обычный жаргон для этих локальных симметрий в физической литературе таков:
• общая ковариантность – для локальной версии специальной теории относительности;
• калибровочная симметрия U (1) – для локальной версии вращения в пространстве свойств электрического заряда;
• калибровочная симметрия SU (2) – для локальной версии вращения в пространстве свойств слабого заряда;
• калибровочная симметрия SU (3) – для локальной версии вращения в пространстве свойств сильного заряда.

