- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл
Шрифт:
Интервал:
Закладка:
Молекула O2 — это первый пример, в котором правило Хунда вступает в действие и играет важную роль. Обратите внимание: при заполнении энергетических уровней электронами два последних электрона имеют неспаренные спины. Возможность иметь неспаренные спины без нарушения принципа Паули появляется благодаря тому, что существует две разных разрыхляющих π-МО. Орбиталь πx* возникает за счёт бокового перекрытия двух атомных px-орбиталей (см. рис. 13.3), а орбиталь πy* появляется за счёт бокового перекрытия двух атомных py-орбиталей. Правило Хунда утверждает, что электроны будут занимать орбитали без спаривания, если это не противоречит принципу Паули и не требует подъёма на значительно более высокоэнергетическую орбиталь. Две обсуждаемые разрыхляющие МО имеют одинаковую энергию, так что правило Хунда вступает в игру.

Рис. 13.8. Диаграмма энергетических уровней МО для молекулы O2. Имеются одна пара σ-связывающих электронов и одна пара π-связывающих электронов. Молекула O2 имеет двойную связь. Обратите внимание на неспаренные электроны связывающей π-МО
Электрон обладает магнитным моментом. В некотором смысле он действует как крохотный магнитный брусок. У него есть северный и южный полюса. Термин «спин»{20} для квантового числа электрона пришёл из классической механики. В классической теории вращающийся пространственно распределённый заряд обладает магнитным моментом. Электрон — это волна амплитуды вероятности. Он имеет делокализованное распределение заряда. В результате у него есть магнитный момент, но этот факт не следует понимать как вращение в буквальном смысле. Это классическая идея. Дирак, которому мы обязаны концепцией абсолютного размера (см. главу 2), объединив квантовую теорию с теорией относительности Эйнштейна, показал, почему электрон обладает магнитным моментом. Электрон в действительности не вращается, но это название закрепилось. Магнитный момент электрона играет важную роль.
Когда спины двух электронов спарены, северный полюс одного крошечного магнита совпадает по направлению с южным полюсом другого. Магнитные свойства одного электрона компенсируют магнитные свойства другого. Однако в молекуле O2 два электрона не спарены. Их спины имеют одинаковое направление. В результате молекула O2 приобретает свойство, называемое парамагнетизмом. Она реагирует на магнит. Вода при температуре выше 100 °C находится в газообразном состоянии, но если охладить её до температуры ниже 100 °C, она превращается в жидкость. С кислородом происходит то же самое, но его требуется охлаждать гораздо сильнее. При комнатной температуре кислород является газом, но если очень сильно его охладить (ниже −183 °C), он переходит в жидкое состояние. Можно налить жидкий кислород в пробирку, подвешенную на нити. Если поднести к этой пробирке магнит, то он её притянет. Спины электронов (маленькие магнитные бруски) в молекулах O2 выстраиваются вдоль магнитного поля внешнего макроскопического магнита. Эти выстроившиеся крошечные магнитики, складываясь вместе, придают жидкому кислороду магнитные свойства, и пробирка притягивается к внешнему магниту.
Корректное предсказание парамагнитных свойств O2, сделанное на основе анализа диаграммы энергетических уровней МО, — это замечательный результат. Магнитный момент O2 — это сугубо квантовый эффект, и наше предсказание того, что O2 является парамагнетиком, появилось благодаря применению правила Хунда. Следуя определённым правилам, мы нарисовали линии, отвечающие энергетическим уровням. Затем, следуя другим правилам, мы разместили на этих линиях энергетических уровней стрелки, направленные вверх и вниз (расселили по ним электроны). На основе этих линий и стрелок мы смогли предсказать, что молекула кислорода является магнитной, хотя молекулы фтора и азота таковыми не являются.
Молекула азота
На рис. 13.9 представлена заполненная диаграмма энергетических уровней МО для азота N2. Атом азота находится в Периодической таблице непосредственно слева от кислорода. Обратите внимание, что есть перестановка в порядке следования связывающих МО, порождённых p-электронами. Подробные квантовомеханические вычисления позволяют получить порядок следования и значения энергетических уровней МО. У азота этот порядок иной, чем у O2 и F2. Атом азота имеет семь электронов, так что молекула N2 содержит 14 электронов. Как и в случае с F2 и O2, 1s- и 2s-электроны не участвуют в связывании, поскольку они заполняют как связывающие, так и разрыхляющие МО. На заполнение этих МО уходит восемь из 14 электронов. Остальные шесть электронов расселяются по трём связывающим МО — одной σ-МО и двум π-МО. На разрыхляющих π-МО и σ-МО, образованных pz-орбиталями, электронов нет. Таким образом, N2 имеет связь порядка 3, то есть тройную связь. Тройная связь сильнее и короче, чем двойная или одиночная. Обратите внимание, что в молекуле N2 нет неспаренных электронов. Она не является парамагнитной. При низкой температуре (ниже −196 °C) азот становится жидким. Однако сдвинуть пробирку с жидким азотом с помощью магнита не получится, поскольку у него нет неспаренных спинов.
Одиночные, двойные и тройные связи
В главе 11, обсуждая связывание на основе положения атома в Периодической таблице, мы воспользовались представлением о том, что атом стремится сформировать ковалентные связи таким образом, чтобы совместное использование электронов позволяло ему достичь конфигурации благородного газа. Для обсуждаемых здесь элементов второй строки Периодической таблицы — азота, кислорода и фтора — таким благородным газом является неон. Как уже говорилось, атом фтора, который на один электрон отстаёт от конфигурации атома неона, будет совместно с другим атомом использовать один электрон. Атом кислорода, на два элемента отстающий от конфигурации атома неона, будет использовать два электрона, а атом азота, которому до неона не хватает трёх электронов, будет совместно использовать три электрона.

Рис. 13.9. Диаграмма энергетических уровней МО для молекулы N2. Имеется одна дополнительная пара σ-связывающих электронов и две дополнительные пары π-связывающих электронов. N2 имеет тройную связь
Здесь мы увидели, что F2 образует одиночную связь, O2 — двойную связь, а N2 — тройную. Одиночный, двойной или тройной тип связи между атомами обозначают F−F, O=O и N≡N соответственно. О связи между атомами принято думать как о совместно используемых электронах. Ковалентная связь — это связь, образованная совместным использованием пары электронов. Двойная связь — это совместное использование двух пар электронов, тройная — трёх пар. Когда связывающие МО в точности компенсируются разрыхляющими МО, электроны в действительности не используются атомами совместно. Они находятся на молекулярных орбиталях, но связывающие МО порождают конструктивную интерференцию волн амплитуды вероятности, а разрыхляющие МО — деструктивную интерференцию и гасят друг друга. Электроны в этом случае называются неподелёнными парами. Эти пары электронов не дают вклада в связывание. Только одиночная связь, то есть совместно используемая пара электронов в молекуле F2, обеспечивает каждому из атомов F дополнительный электрон, необходимый им для достижения конфигурации атома Ne. В молекуле O2 двойная связь (совместное использование двух пар электронов) обеспечивает по два дополнительных электрона каждому атому O, что позволяет им достичь конфигурации атома Ne. В молекуле N2 тройная связь (совместное использование трёх пар электронов) обеспечивает три дополнительных электрона каждому атому азота, наделяя их конфигурацией атома Ne.

