- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл
Шрифт:
Интервал:
Закладка:
На рис. 13.2 представлены связывающие и разрыхляющие σ-МО, образованные как s-орбиталями, так и p-орбиталями. В верхней части рисунка изображены два возможных способа объединения s-орбиталей. s-орбитали — это волны, и с ними может быть связан либо знак «плюс», либо знак «минус». Вверху обе s-орбитали имеют знак «плюс». Когда они объединяются, волны этих s-орбиталей интерферируют конструктивно и порождают σ-связывающую МО. Ниже на рисунке одна s-орбиталь имеет знак «плюс», а другая — знак «минус». Когда они объединяются, то интерферируют деструктивно и образуют разрыхляющую МО. Связывающая МО концентрирует электронную плотность между ядрами, тогда как разрыхляющая МО выталкивает электронную плотность вовне, уменьшая несущую отрицательный заряд электронную плотность между ядрами. Положительно заряженные ядра отталкиваются сильнее, что и делает эту конфигурацию разрыхляющей.
В нижней части рис. 13.2 показаны результаты объединения двух орбиталей с получением молекулярных σ-орбиталей. σ-p-связывающие МО образуются в результате перекрытия положительных лепестков одной p-орбитали с положительными лепестками другой p-орбитали. Возникает конструктивная интерференция между положительными лепестками, создающая высокую электронную плотность между атомными ядрами. Имеются две узловые плоскости, перпендикулярные странице. Эти две узловые плоскости наследуются от двух атомных p-орбиталей. Напротив, в самом низу рисунка показано, как положительные лепестки одной p-орбитали перекрываются с отрицательными лепестками другой p-орбитали.

Рис. 13.2. Вверху: пара s-орбиталей перекрывается двумя разными способами, давая σ-связывающую (конструктивная интерференция) и σ-разрыхляющую (деструктивная интерференция) молекулярные орбитали. Внизу: пара p-орбиталей перекрывается двумя способами, давая σ-связывающую (конструктивная интерференция) и σ-разрыхляющую (деструктивная интерференция) молекулярные орбитали. Во всех случаях вдоль линии, соединяющей ядра, имеется ненулевая электронная плотность
В результате деструктивной интерференции образуется разрыхляющая МО. Электронная плотность выталкивается наружу и значительно уменьшается между двумя ядрами. В дополнение к двум узловым плоскостям, унаследованным от атомных орбиталей, появляется третья узловая плоскость, которая возникает благодаря полной деструктивной интерференции между положительным и отрицательным лепестками двух атомных p-орбиталей. У всех этих связывающих и разрыхляющих МО, образованных из атомных p-орбиталей, на линии, соединяющей ядра, электронная плотность отлична от нуля. Следовательно, это σ-МО.
Молекулярные пи-орбитали
s-орбитали могут формировать только σ-МО, но p-орбитали могут образовывать как σ-МО, так и другой тип молекулярных орбиталей, обозначаемых π (греческая буква «пи»). Когда атомные орбитали сближаются концами, они образуют σ-МО. Когда они сближаются боками, они образует π-МО (рис. 13.3).
В верхней части рисунка две p-орбитали образуют связывающую молекулярную орбиталь. Положительный лепесток одной атомной орбитали перекрывается с положительным лепестком другой, и аналогично для отрицательных лепестков. Как видно из рисунка, в области между двумя ядрами возникает значительная электронная плотность. Однако вдоль прямой, соединяющей ядра, электронная плотность равна нулю. Имеется узловая плоскость, перпендикулярная плоскости страницы, поскольку у каждой из атомных орбиталей есть такая узловая плоскость. Эта узловая плоскость проходит через ядра. Несмотря на наличие узловой плоскости, электронная плотность непосредственно над и под линией, соединяющей ядра, уменьшает отталкивание положительных ядерных зарядов. Энергия становится ниже, чем у отдельных атомов, что приводит к образованию π-связывающей МО.
В нижней части рис. 13.3 показана π-связывающая МО. Две атомные p-орбитали сближаются боками, но положительный лепесток одной орбитали перекрывается с отрицательным лепестком другой, и наоборот. Результатом становится деструктивная интерференция между лепестками, приводящая к появлению π-разрыхляющей МО. Разрыхляющая МО имеет значительно меньшую электронную плотность между ядрами. Вследствие этого энергия становится выше, чем у отдельных атомов, и поэтому такая конфигурация атомных орбиталей порождает разрыхляющую МО.

Рис. 13.3. Вверху: пара p-орбиталей перекрывается, сближаясь боками, что даёт связывающую π-орбиталь (конструктивная интерференция); вдоль линии, соединяющей ядра, электронная плотность равна нулю. Внизу: пара p-орбиталей перекрывается, сближаясь боками, с образованием разрыхляющей π-орбитали (деструктивная интерференция). Обратите внимание на знаки лепестков атомных p-орбиталей. У разрыхляющей МО имеется узловая плоскость, проходящая между ядрами
Связи в двухатомных молекулах: молекула фтора
Теперь мы готовы к обсуждению связей в двухатомных молекулах с атомами, отличными от водорода. Начнём с двухатомной молекулы фтора F2. Будем использовать тот же подход, что применялся для H2, но теперь имеется больше орбиталей, и в дело вовлечено больше электронов. Представим, что мы сближаем два атома F и останавливаемся в точке с наименьшей энергией. Это расстояние, на котором два атома F удерживаются, когда они связаны (в предположении, что они образуют связь), как на рис. 12.5. Можно нарисовать диаграмму энергетических уровней, как на рис. 12.6. Необходимо определить ось, вдоль которой будут сближаться атомы, поскольку у них имеются pz-, px- и py-орбитали. Необходимо учитывать, сближаются p-орбитали концами или боками. Когда два атома (обозначим их a и b) сближаются вдоль оси z (рис. 13.4), pz-орбитали встречаются концами, а px- и py-орбитали — боками. Поэтому атомные pz-орбитали будут образовывать σ-МО, а px- и py-орбитали — π-МО.

Рис. 13.4. Два атома сближаются вдоль оси z. При этом pz-орбитали будут сближаться концами, а px- и py- орбитали — боковыми сторонами
На рис. 13.5 представлена диаграмма энергетических уровней для двух атомов F, сблизившихся вдоль оси z. На этой диаграмме энергетические уровни атомных орбиталей двух атомов (a и b) изображены справа и слева, а соответствующие связывающие и разрыхляющие (*) МО показаны в середине. σ-MO, образованные атомными s-орбиталями, имеют индекс s; σ-MO, образованные атомными pz-орбиталями, имеют индекс z, а π-МО, образованные атомными орбиталями px и py, имеют индексы x и y. Связывающие МО всегда ниже по энергии, чем атомные орбитали, которыми они образованы, а разрыхляющие МО всегда имеют более высокую энергию. Три атомные p-орбитали имеют одинаковую энергию. Когда квантовые состояния обладают одинаковой энергией, говорят, что они вырождены. На диаграмме три атомные p-орбитали, хотя они являются вырожденными, изображены тремя отдельными близко расположенными линиями. Как показано, только соответствующие друг другу атомные орбитали с одинаковой энергией объединяются в МО. Этот результат вытекает из квантовой теории.

