Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Математика » φ – Число Бога. Золотое сечение – формула мироздания - Марио Ливио

φ – Число Бога. Золотое сечение – формула мироздания - Марио Ливио

Читать онлайн φ – Число Бога. Золотое сечение – формула мироздания - Марио Ливио

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 43 44 45 46 47 48 49 50 51 ... 64
Перейти на страницу:

Римский поэт Вергилий (70–19 гг. до н. э.) вырос в семье земледельца, и многие ранние его пасторальные произведения повествуют об очаровании сельской жизни. Эпическая поэма «Энеида» рассказывает о приключениях троянского героя Энея и считается одним из величайших поэтических произведений в истории. Поэма состоит из двенадцати книг, и Вергилий прослеживает в ней путь Энея от путешествия из Трои в Карфаген и любви к Дидоне до образования римского государства. Эней для Вергилия – образец благочестия, преданности семье и верности государству.

Дакворт дотошно измерил длину отрывков в «Энеиде» и высчитал соотношение их размеров. В частности, он подсчитал количество строк в эпизодах, которые назвал «бо́льшими» (их он обозначил как M) и «меньшими» (обозначены как m), и подсчитал соотношение этих чисел. Больший эпизод или меньший, определялось по содержанию. Скажем, во многих отрывках большая или меньшая часть – это монолог персонажа, а другая часть (соответственно меньшая или большая) – это повествование или описание. Из этого анализа Дакворт делает вывод, что в «Энеиде» содержатся «сотни золотых сечений». Он также отмечает, что более ранний анализ (проведенный в 1949 году) другого произведения Вергилия – первой книги «Георгик» – дает соотношение двух частей под условными названиями «Труды» и «Дни» (образцом для Вергилия при создании «Георгик» послужили «Труды и дни» Гесиода), очень близкое к φ.

К сожалению, Роджер Герц-Фишлер доказал, что анализ Дакворта, скорее всего, построен на математическом недоразумении. Поскольку подобное заблуждение типично для многих «открытий», связанных с золотым сечением, я вкратце объясню, в чем тут дело.

Рис. 91

Предположим, у нас есть два положительных числа m и M, такие, что M больше m. Ну, например, = 317, и это количество страниц в последней прочитанной вами книге, а = 160, и это ваш рост в сантиметрах. Отметим эти два числа на отрезке прямой (проследим, чтобы относительные пропорции при этом сохранялись), как на рис. 91. Отношение меньшей части к большей равно m/M = 160/317 = 0,504, а отношение большей к целому – M/(M m) = 317/477 = 0,665. Вы, конечно, отметите, что значение M/(M m) ближе к 1/φ=0,618, чем m/M. Можно математически доказать, что это всегда так (проверьте на количестве страниц в книге, которую прочитали последней, и собственном росте в сантиметрах). По определению золотого сечения, если отрезок разделен в этом соотношении, то m/M M/(M m) в точности. Следовательно, возникает искушение сделать вывод, что если исследовать много отношений чисел, например, длин эпизодов, в поисках возможного присутствия золотого сечения, неважно, какое отношение мы возьмем – меньшей части к большей или большей к целому. Так вот, я только что доказал, что очень даже важно. Излишне рьяный поклонник золотого сечения, желающий доказать, что рост читателей находится в отношении золотого сечения с количеством страниц в прочитанных ими книгах, вероятно, сумеет это сделать, если представит данные в формате M/(M m), то есть в таком виде, который делает их ближе к 1/φ. Именно это и приключилось с Даквортом. Он принял неудачное решение прибегнуть в ходе анализа только к соотношению M/(M m), поскольку решил, что так «несколько точнее», и поэтому сжал и исказил данные и лишил свой анализ статистической достоверности. Более того, Леонард А. Керчин из Оттавского университета и Роджер Герц-Фишлер повторили в 1981 году анализ данных Дакворта, пользуясь, однако, соотношением m/M, и показали, что в «Энеиде» нет ни следа золотого сечения. Они сделали другой вывод – что «Вергилий склонен к случайному распределению длины эпизодов». Кроме того, Дакворт ошибочно «наделил» Вергилия познаниями, что отношение двух последовательных чисел Фибоначчи – это достаточно точное приближение к золотому сечению. Керчин и Герц-Фишлер, напротив, убедительно продемонстрировали, что даже Герон Александрийский, который жил позднее Вергилия и был одним из выдающихся математиков своего времени, не знал об этом соотношении между золотым сечением и числами Фибоначчи.

К сожалению, заявления о Вергилии и φ по-прежнему появляются в большинстве книг и статей о золотом сечении, что в очередной раз показывает, как велико обаяние «золотой нумерологии».

Все попытки обнаружить золотое сечение в разнообразных произведениях изобразительного искусства, в музыке и поэзии – как обоснованные, так и необоснованные – опираются на предположение, что на свете существует канон идеальной красоты и что его можно воплотить на практике. Однако история показала, что художники, создававшие произведения, которые надолго их пережили, по большей части как раз отходили от подобных академических представлений. Золотое сечение, бесспорно, играет важную роль во многих областях математики и естественных наук, однако, по моему скромному убеждению, нельзя делать из него незыблемый эстетический стандарт – ни в пропорциях человеческого тела, ни в качестве мерила в изящных искусствах.

Звездное небо над нами и плиточный пол у нас под ногами

В конечном счете, именно ради понимания мы и затеяли всю науку, а наука – это все же нечто большее, нежели просто бездумное вычисление.

Роджер Пенроуз (р. 1931)

Запутанная история золотого сечения началась в VI веке до нашей эры и дошла до сегодняшнего дня. Эти двадцать шесть столетий пронизаны двумя основными нитями повествования. Я имею в виду, с одной стороны, пифагорейский девиз «Все есть число», который поразительным образом воплощается в действительность в самом буквальном смысле – в той роли, которую играет золотое сечение в природе, от филлотаксиса до формы галактик, – а с другой стороны, пифагорейскую одержимость символическим значением правильного пятиугольника, которая преобразилась в ложное, по моему мнению, представление, что золотое сечение – это универсальной канон идеала красоты. После всего этого читатель вправе задаться вопросом, стоит ли и дальше исследовать это простое, на первый взгляд, правило разделения отрезка.

Мощенная плитками дорога к квазикристаллам

Голландский художник Ян Вермеер (1632–1675) знаменит своими поразительными, чарующими жанровыми полотнами, на которых, как правило, изображены один-два человека за повседневными делами. На многих этих картинах слева от зрителя расположено окно, которое освещает комнату мягким светом, и отражение этого света от плиток на полу оставляет впечатление подлинного волшебства. Если пристально рассматривать эти картины, окажется, что на многих из них – в частности, я имею в виду картины «Концерт», «Дама, пишущая письмо, со своей служанкой», «Любовное письмо» (рис. 92, хранится в Государственном музее в Амстердаме) и «Аллегория живописи» (рис. 93, хранится в Музее истории искусств в Вене) – изображен пол с одним и тем же плиточным узором из черных и белых квадратов.

Рис. 92

Рис. 93

Если хочешь получить покрыть плитками весь пол и получить при этом повторяющийся через равные промежутки узор, то мостить полы удобнее всего именно квадратами, равносторонними треугольниками и правильными шестиугольниками, и это называется «периодическое замощение» (рис. 94). Простые, ничем не украшенные квадратные плитки и узоры, которые они образуют, обладают четырехсторонней симметрией: если повернуть их на четверть круга, то есть на 90 градусов, они останутся прежними. Подобным же образом плитки в виде равносторонних треугольников обладают трехсторонней симметрией (они остаются прежними при повороте на треть круга, то есть на 120 градусов), а плитки в виде правильных шестиугольников – шестисторонней симметрией (то есть остаются прежними при повороте на шестую часть круга, на 60 градусов).

Рис. 94

Рис. 95

Однако периодические замощения возможны и при помощи более сложных геометрических фигур. Например, крепость Альгамбра в Гренаде, один из самых потрясающих памятников мусульманской архитектуры, отделана разнообразными сложными узорами из плиток (рис. 95). Некоторые из них даже вдохновили знаменитого голландского графика М. К. Эшера (1898–1972), и он создал множество весьма изысканных узоров-замощений (например, рис. 96), которые называл «разбиением плоскости».

Рис. 96

Теснее всего из всех геометрических фигур с золотым сечением связан, конечно, правильный пятиугольник, обладающий пятисторонней симметрией. Однако одними правильными пятиугольниками плоскость не замостишь, периодического узора не получится. Сколько ни старайся, останутся незаполненные промежутки. Поэтому долгое время считалось, что невозможно создать замощение с крупномасштабной упорядоченностью (так называемым «дальним порядком»), обладающее пятисторонней симметрией. Однако Роджер Пенроуз в 1974 году обнаружил два основных набора плиток, при помощи сочетания которых можно замостить плоскость целиком, соблюдая при этом «запретную» пятистороннюю симметрию. Получившиеся узоры не строго периодичны, хотя и обладают дальним порядком.

1 ... 43 44 45 46 47 48 49 50 51 ... 64
Перейти на страницу:
На этой странице вы можете бесплатно скачать φ – Число Бога. Золотое сечение – формула мироздания - Марио Ливио торрент бесплатно.
Комментарии