- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Этот «цифровой» физический мир - Андрей Гришаев
Шрифт:
Интервал:
Закладка:
Впрочем, не менее убийственен для принципа относительности даже такой феномен, как линейный эффект Допплера в оптике. Пока свет считали упругими волнами в эфире, допплеровские сдвиги длин волн, при движении в эфире излучателя и приёмника, объяснялись тривиально. Упразднив эфир, а заодно и скорости излучателя и приёмника по отношению к нему, Эйнштейн заявил, что линейный эффект Допплера в оптике зависит лишь от относительной скорости излучателя и приёмника – скорости их сближения или расхождения. Откуда же, при таких делах, могут браться допплеровские сдвиги длин волн – да ещё если, согласно принципу относительности, скорость света всегда одинакова как для излучателя, так и для приёмника? Релятивисты этого сами не понимают: кроме абстрактных математических вывертов с четырёх-векторами, никакого физического объяснения у них нет.
По нашей же модели «привязки» скорости света – здесь всё прозрачно для понимания. Если атом-источник движется относительно локального участка частотного склона, т.е. имеет ненулевую локально-абсолютную скорость, то каждая последующая «поисковая волна» будет расходиться из нового центра, так что длина волны, идущей по ходу движения источника, будет уменьшена, и наоборот – в согласии с выражением для линейного эффекта Допплера. Аналогично, атом-получатель, из-за своего движения, также будет воспринимать изменённой длину «поисковой волны». Подчеркнём, что наличие линейных допплеровских сдвигов длин «поисковых волн» отнюдь не означает, что это отразится на величинах передаваемых квантов энергии. Прямые доказательства изменения энергии кванта света из-за движения атома-источника или атома-приёмника – отсутствуют. И если допустить, что этого изменения энергии действительно нет, то для нас сразу проясняется вопрос о том, каким же образом соблюдается закон сохранения энергии при квантовой передаче, сопровождаемой линейным эффектом Допплера. Традиционно, соблюдение этого закона здесь пытаются объяснить с учётом эффекта отдачи при излучении и поглощении фотона. Но это объяснение – из разряда противоречивых, поскольку отдача имела бы место даже у покоящегося атома-источника, когда допплеровского сдвига на нём нет! Проблема устраняется, если допустить, что линейные допплеровские сдвиги испытывают лишь длины «поисковых волн», и это не отражается на энергиях квантов света.
Добавим, что имеют место годичные вариации положений спектральных линий звёзд – в соответствии с орбитальным движением Земли вокруг Солнца [С2]. Мы объясняем это тем, что «поисковые волны» приобретают сдвиги, эквивалентные допплеровским, при пересечении «подвижной» границы раздела двух различных областей «инерциальной привязки»: длина волны изменяется при входе в частотную воронку Солнца, а затем – при входе в частотную воронку Земли. Но наблюдаемый цвет звезды при этом не должен изменяться. Так ли это в действительности – однозначный ответ нам неизвестен. Ситуация осложняется тем, что сдвиги спектральных линий звёзд могут иметь не только допплеровское происхождение [Г12].
Заметим, что из «привязки скорости света» к местному участку частотного склона немедленно следует независимость скорости света от характера движения источника – хорошо известное явление, которое у Эйнштейна не объясняется, а лишь постулируется (второй постулат СТО). Здесь, конечно, подразумевается скорость света «в один конец» - в частности, света, идущего от двойных звёзд к земному наблюдателю. Видимое обращение двойных звёзд отличалось бы от кеплеровского, если бы свет от приближавшейся к нам звезды двигался быстрее, чем от удалявшейся.
Добавим, что, благодаря орбитальному движению планетарных частотных воронок, возможно наблюдать такой феномен, как полное увлечение света планетарным «инерциальным пространством» - если пустить световой импульс так, чтобы он прошёл планетарную воронку насквозь, параллельно вектору её орбитальной скорости. Двигаясь по межпланетному пространству до влёта в планетарную частотную воронку и после вылета из неё, световой импульс имел бы скорость c по отношению к солнечному частотному склону. В пределах же планетарной частотной воронки, он имел бы скорость c по отношению к ней самой – а она, в свою очередь, движется относительно солнечного частотного склона с орбитальной скоростью. Тогда полётное время светового импульса, проходящего сквозь планетарную частотную воронку по ходу её орбитального движения, было бы меньше полётного времени импульса, проходящего по тому же самому пути в обратном направлении. Например, для случая земной частотной воронки, имеющей радиус R≈900000 км, полётные времена световых импульсов, которыми обменивались бы космические корабли, находящиеся за её пределами, могли бы различаться на величину ~4RVorb/c2, где Vorb=30 км/с, т.е. примерно на одну миллисекунду.
Как можно видеть, эйнштейновская процедура синхронизации часов с помощью световых импульсов, движущихся «туда и обратно», могла бы, теоретически, быть корректна лишь в пределах одной и той же области «инерциального пространства» - например, в области планетарного тяготения. Ведь при пересечении светом границы этой области, переключается «привязка» его скорости, и пролётные времена «туда» и «обратно» перестают быть равными.
Уместно добавить, что ситуация совершенно аналогична и для случая радиоволн, «привязка» скорости которых организована по тем же принципам, как и для скорости света. Мало кто знает, что, на XVII Генеральной конференции по мерам и весам в 1983 г., константе c, т.е. «скорости плоской электромагнитной волны в вакууме», было приписано значение с нулевой погрешностью: c=299792458 м/с [Д3]. Это понадобилось для того, чтобы без ущерба перенести точность частотных измерений на измерения длин, и, таким образом, реализовать «пролётное определение метра»: это расстояние, проходимое плоской электромагнитной волной в вакууме за время, равное 1/299792458 секунды. На этом «пролётном определении метра» и основана работа спутниковых навигационных систем – в частности, GPS. Но, из вышеназванных особенностей «привязки» скорости радиоизлучения следует, что корректное создание «навигационного поля» по принципам, реализуемым в GPS, возможно в пределах лишь одной и той же области тяготения – например, в пределах земной частотной воронки – когда используемые радиоимпульсы не пересекают её границ.
3.9. Как Эддингтон изображал искривление лучей света тяготением Солнца.
Традиционные представления о свете, как о летящих фотонах, подразумевают, что фотоны являются полноценными частицами, которые подвержены действию тяготения. Т.е., фотон, пролетающий вблизи массивного тела, должен искривлять свою траекторию из-за гравитационного притяжения к «силовому центру». Эйнштейн утверждал, что, помимо этого гравитационного притяжения, существует ещё один механизм, дополнительно искривляющий траекторию пролетающего фотона (см., например, [Э1]). Согласно общей теории относительности (ОТО), по мере приближения к «гравитирующему телу», замедляется темп течения времени, и, соответственно, уменьшается скорость света. А известно, что градиент скорости света вызывает рефракцию, т.е. искривление траектории света в ту сторону, где его скорость меньше. Предсказанная величина поворота траектории фотона из-за этой «гравитационной рефракции» оказалась такая же, как и из-за чисто гравитационного притяжения фотона, т.е. теория Эйнштейна предсказывала удвоенное искривление луча, по сравнению с классическими предсказаниями. Если на опыте обнаружился бы удвоенный эффект – это подтвердило бы общую теорию относительности.
Такие опыты были проведены; но прежде чем о них говорить, изложим предварительные соображения, следующие из наших представлений о свете. Во-первых, фотонов, в традиционном понимании, не существует: кванты световой энергии перебрасываются непосредственно с атома на атом, не проходя по разделяющему атомы пространству (3.4). Раз нет летящих фотонов, то нет и гравитационного воздействия на них. Направление продвижения кванта света определяется только Навигатором (3.4), в работу которого тяготение не вмешивается. Во-вторых, сегодня можно считать твёрдо установленным, что имеют место гравитационные сдвиги квантовых уровней энергии в веществе, но они обусловлены отнюдь не «гравитационным замедлением времени» - которого не существует в природе (1.14), а, значит, не существует и зависимости скорости света от гравитационного потенциала, которая вызывала бы «гравитационную рефракцию». Таким образом, мы не усматриваем причин ни для действия тяготения на сам свет, ни для «гравитационной рефракции».
Но нас уверяют, что астрономам удалось обнаружить искривления лучей света от звёзд, проходившего вблизи Солнца – в согласии с предсказаниями ОТО! Оказалось, что эти уверения гроша ломаного не стоят. Астрономы, действительно, развернули бурную деятельность – но при этом они упорно выдавали желаемое за действительное.

