- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Написание скриптов для Blender 2.49 - Michel Anders
Шрифт:
Интервал:
Закладка:
def __call__(self):
twopi = 2*pi
col = [0,0,0,1]
nor = [0,0,1]
tex_coord = self.input.Coords
x = tex_coord[0]
y = tex_coord[1]
a = self.input.a
c = self.input.c
Noise.setRandomSeed(42)
scn = Scene.GetCurrent()
context = scn.getRenderingContext()
current_frame = context.currentFrame()
start_frame = context.startFrame()
end_frame = context.endFrame()
frames_per_second = context.fps
time = current_frame/float(frames_per_second)
Следующим шагом нужно определить, должны ли мы вычислять позиции точек удара капель заново. Это необходимо, только если величина входного сокета drops_per_second была изменена пользователем (Вы могли бы соединить этот вход с некоторым другим нодом, который будет изменять эту величину на каждом пикселе, но это плохая идея), или когда стартовый или конечный кадр анимации изменились, как эти влияния количества капель мы должны вычислять. Этот тест выполняется на выделенной строке следующего кода сравнением вновь полученных величин с сохранёнными в переменных экземпляра:
drops_per_second = self.input.Drops_per_second
# вычисление числа капель для генерации
# в период анимации
ndrops = 1 + int(drops_per_second *
(float(end_frame) – start_frame+ 1)/
frames_per_second )
if self.drops_per_second != drops_per_second
or self.ndrops != ndrops:
self.drop = [ (Noise.random(), Noise.random(),
Noise.random() + 0.5) for i in range(ndrops)]
self.drops_per_second = drops_per_second
self.ndrops = ndrops
Если мы должны вычислить позиции капель заново, мы назначаем список кортежей в переменную экземпляра self.drop, каждый из которых состоит из координат x и y позиции капли и случайного размера капли, от которой будет зависеть высота волн.
Строк оставшейся части полностью выполняются всякий раз при вызове __call__(), но выделенная строка показывает значимую оптимизацию. Поскольку капли, которые еще не упали в текущем кадре, не привносят изменений высоты, мы исключаем их из вычисления:
speed=self.input.speed
freq=self.input.freq
dampf=self.input.dampf
height = 0.0
height_dx = 0.0
height_dy = 0.0
nabla = 0.01
for i in range(1+int(drops_per_second*time)):
dropx,dropy,dropsize = self.drop[i]
position_of_maximum=speed*time-
i/float(drops_per_second)
damping = 1.0/(1.0+dampf*position_of_maximum)
distance = sqrt((x-dropx)**2+(y-dropy)**2)
height += damping*a*dropsize*
exp(-(distance-position_of_maximum)**2/c)*
cos(freq*(distance-position_of_maximum))
distance_dx = sqrt((x+nabla-dropx)**2+
(y-dropy)**2)
height_dx += damping*a*dropsize*
exp(-(distance_dx-position_of_maximum)**2/c)
* cos(freq*(distance_dx-position_of_maximum))
distance_dy = sqrt((x-dropx)**2+
(y+nabla-dropy)**2)
height_dy += damping*a*dropsize*
exp(-(distance_dy-position_of_maximum)**2/c)
*cos(freq*(distance_dy-position_of_maximum))
В предыдущем коде мы действительно вычисляем высоту в трех различных позициях, чтобы получить возможность аппроксимировать нормаль (как объяснено раньше). Эти величины используются в следующих строках, чтобы определить x и y компоненты нормали (z компонента установлена в единицу). Сама рассчитанная высота делится на количество капель (таким образом, средняя высота не изменится при изменении количества капель) и на общий коэффициент масштабирования a, который может быть задан пользователем прежде, чем будет подсоединён выходной сокет (выделено):
nor[0]=height-height_dx
nor[1]=height-height_dy
height /= ndrops * a
self.output.Height = height
N = (vec(self.shi.surfaceNormal)+0.2 *
vec(nor)).normalize()
self.output.Normal= N
__node__ = Raindrops
Рассчитанная нормаль затем добавляется к поверхностной нормали того пикселя, который мы вычисляем, таким образом, волны будут все еще хорошо выглядеть на искривленной поверхности, и нормируется перед назначением её в выходной сокет. Последняя строка как обычно определяет значимое имя для этого Pynode. Полный код и пример настройки нодов доступны как raindrops.py в файле raindrops.blend. Пример кадра из анимации показан на следующем скриншоте:
Пример нодовой сети показан на следующем скриншоте:
Грозовой перевал — материал, зависимый от наклона
В Блендере очень просто генерировать фрактальную местность (просто добавьте плоскость, перейдите в режим редактирования, выберите всё, затем несколько раз подразделите фрактально W > 3). Если Вы хотите чего-то большего, Вам в помощь существует несколько отлично разработанных скриптов (посмотрите, например, http://sites.google.com/site/androcto/Home/python-scripts/ANTLandscape_104b_249.py). Но как Вы наложите текстуры на такую местность? В этом примере мы изучим метод, выбирающий между различными входами материала, основываясь на величине угла наклона поверхности, которую мы затеняем. Это позволит нам создать эффект, при котором очень крутые откосы обычно лишены зелени, даже если они оказались ниже линии деревьев. В комбинации с высото-зависимым материалом мы сможем затенить гористую местность достаточно убедительно.
Уменьшение времени вычислений:
Pynodes в вычислительном отношении затратны, так как они вызываются для каждого видимого пикселя. Умное программирование может иногда уменьшить количество необходимых вычислений, но если требуется дальнейшее ускорение, может помочь компилятор-на-лету (just-in-time compiler). psyco является таким компилятором и, мы столкнемся с ним в последней главе, где мы будем применять его на Pynodes и посмотрим, имеет ли он какой-либо заметный эффект.
Определение уклонаУклон может быть определен как угол между плоскостью пола и касательной к поверхности в интересующей нас точке.
Поскольку мы принимаем нашу (воображаемую) плоскость пола вытянутой горизонтально вдоль осей x и y, этот угол полностью определяется z-компонентой нормали к поверхности в этой же точке. Теперь мы можем вычислить этот угол точно (это arcsin(z/√x2+y2) ), но, как художникам, нам, возможно, в любом случае захочется иметь некоторое дополнительное управление, таким образом мы просто берем нормализованную z-компоненту нормали к поверхности и изменяем эту выходную интенсивность с помощью любого нода color ramp, который нам нравится. В пределах Pynode, нормаль поверхности является легко доступным вектором: self.input.shi.surfaceNormal. Однако есть препятствие...
Мировое пространство против пространства камерыНормаль поверхности, которую мы имеем в распоряжении, определена в пространстве камеры. Это означает, что, например, когда нормаль поверхности указывает прямо в камеру, она определена как (0, 0,-1). В данный момент мы хотим определить нашу нормаль поверхности в мировом пространстве. Нормаль, которая указывает прямо вверх, например, должна иметь величину (0,0,1) независимо от позиции или наклона камеры (в конце концов, растительность на горном склоне обычно не изменяется с изменением угла камеры). К счастью, мы можем провести преобразование из пространства камеры в мировое пространство, взяв матрицу камеры мирового пространства и умножив нормаль поверхности на вращающую часть этой матрицы. Результирующий код выглядит похожим на это:
class Slope(Node.Scripted):
def __init__(self, sockets):
sockets.output = [Node.Socket('SlopeX', val = 1.0),
Node.Socket('SlopeY', val = 1.0),
Node.Socket('SlopeZ', val = 1.0),]
self.offset = vec([1,1,1])
self.scale = 0.5
Заметьте, что код инициализации не определяет входных сокетов. Мы получим нормаль поверхности в позиции пикселя, который мы затеняем, из входа shader (выделено в следующей части кода). Мы определяем три отдельных выходных сокета для x, y, и z компонент наклона для удобства использования в нодовой сети. Так как мы, по большей части, используем именно z-компоненту наклона, то если мы будем иметь её доступной в отдельном сокете, нам не придётся использовать для её извлечения из вектора дополнительный нод обработки вектора.

