- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Большая Советская Энциклопедия (НЕ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Нейтринная астрофизика. Необходимость исследования астрофизических явлений с участием нейтрино породила новую ветвь в астрофизике — нейтринную астрофизику. По современным представлениям, нейтринное излучение, которое сильно растет с увеличением температуры, оказывает решающее влияние на картину эволюции звёзд на завершающих стадиях, когда температура в недрах звезды достигает ~ 109 K и выше. Это связано с тем, что испускание нейтрино происходит из самых горячих, внутренних областей звезды (так как пробеги нейтрино в веществе значительно больше размеров звезды), и поэтому именно нейтринное излучение определяет скорость потери энергии такими звёздами. Примером является влияние гипотетического электронно-нейтринного взаимодействия (предсказываемого универсальной теорией слабого взаимодействия; см. Нейтрино ) на эволюцию ядра планетарных туманностей, учёт которого позволяет согласовать наблюдаемые данные о времени эволюции с теоретическими расчётами; в свою очередь, возможность такого согласования является аргументом в пользу существования этого взаимодействия.
Когда температура в центре звезды достигает значения ~1011 К, пробег ne становится сравнимым с размерами звезды и при дальнейшем увеличении температуры звезда становится непрозрачной для нейтрино. Поскольку, однако, пробеги нейтрино остаются ещё несравнимо большими пробегов фотонов, перенос энергии в звезде осуществляется посредством нейтринного газа (нейтринная теплопроводность) и потери энергии продолжают определяться нейтринным излучением. При температурах ³ 2×1011 К звёзды становятся непрозрачными и для мюонных нейтрино nm . Такие стадии жизни звезды наиболее загадочны и интересны. Предполагается, что нейтринное излучение играет решающую роль в механизме взрыва сверхновых.
Развитие Н. а. и нейтринной астрофизики обещает дать ценную информацию не только о строении небесных тел, но по природе самого нейтрино и свойствах слабого взаимодействия.
Лит.: Нейтрино. Сб. ст., пер. с англ., М., 1970 (Современные проблемы физики); Бакал Дж., Солнечные нейтрино, «Успехи физических наук», 1970, т. 101, в. 4, с. 739—53; Азимов А., Нейтрино — призрачная частица атома, пер. с англ., М., 1969, с. 92—105.
Г. Т. Зацепин, Ю. С. Копысов.
Нейтрино
Нейтри'но (итал. neutrino, уменьшительное от neutrone — нейтрон), электрически нейтральная элементарная частица с массой покоя много меньшей массы электрона (возможно равной нулю), спином 1 /2 (в единицах постоянной Планка ) и исчезающе малым, по-видимому, нулевым, магнитным моментом. Н. принадлежит к группе лептонов , а по своим статистическим свойствам относится к классу фермионов . Название «Н.» применяется к двум различным элементарным частицам — к электронному (ne ) и к мюонному (nm ) Н. Электронным называется Н., взаимодействующее с др. частицами в паре с электроном е- (или позитроном е+ ), мюонным — Н., взаимодействующее в паре с мюоном (m- , m+ ). Оба вида Н. имеют соответствующие античастицы : электронное
и мюонное
антинейтрино. Электронные и мюонные Н. принято различать с помощью сохраняющихся аддитивных лептонных квантовых чисел (лептонных зарядов) Le и L m , при этом принимается, что Le = + 1, L m = 0 для nе и Le = - 1, L m = 0 для , Le = 0, L m = + 1 для nm и Le = 0, L m = — 1 для . В отличие от др. частиц, Н. обладают удивительным свойством иметь строго определённое значение спиральности l — проекции спина на направление импульса: Н. имеют левовинтовую спиральность (l = —1 /2 ), т. е. спин направлен против направления движения частицы, антинейтрино — правовинтовую (l = + 1 /2 ), т. е. спин направлен по направлению движения.
Н. испускаются при бета-распаде атомных ядер, К-захвате , захвате m- ядрами и при распадах нестабильных элементарных частиц, главным образом пи-мезонов (p+ , p- ), К-мезонов и мюонов. Источниками Н. являются также термоядерные реакции в звёздах.
Н. принимают участие лишь в слабом взаимодействии и гравитационном взаимодействии и не участвуют в электромагнитном и сильном взаимодействиях. С этим связана крайне высокая проникающая способность Н., позволяющая этой частице свободно проходить сквозь Землю и Солнце.
История открытия нейтрино
Гипотеза Паули. Открытие Н. принадлежит к числу наиболее ярких и вместе с тем трудных страниц в физике 20 в. Прежде чем стать равноправным членом семьи элементарных частиц, Н. долгое время оставалось гипотетической частицей.
Впервые в экспериментальной физике Н. проявилось в 1914, когда английский физик Дж. Чедвик обнаружил, что электроны, испускаемые при b-распаде атомных ядер (в отличие от a-частиц и g-квантов, испускаемых при др. видах радиоактивных превращений), имеют непрерывный энергетический спектр. Это явление находилось в явном противоречии с теорией квантов, требовавшей, чтобы при квантовых переходах между стационарными состояниями ядер выделялась дискретная порция энергии (постулат Бора). Поскольку при испускании a-частиц и g-квантов это требование выполнялось, возникло подозрение, что при b-распаде нарушается закон сохранения энергии.
В 1930 швейцарский физик В. Паули в письме участникам семинара в Тюбингене сообщил о своей «отчаянной попытке» «спасти» закон сохранения энергии. Паули высказал гипотезу о существовании новой электрически нейтральной сильно проникающей частицы со спином 1 /2 и с массой £ 0,01 массы протона, которая испускается при b-распаде вместе с электроном, что и приводит к нарушению однородности спектра b-электронов за счёт распределения дискретной порции энергии (соответствующей переходу ядра из одного состояния в другое) между обеими частицами. После открытия в 1932 тяжёлой нейтральной частицы — нейтрона , итальянский физик Э. Ферми предложил называть частицу Паули «нейтрино». В 1933 Паули сформулировал основные свойства Н. в их современном виде. Как выяснилось позже, эта гипотеза «спасла» не только закон сохранения энергии, но и законы сохранения импульса и момента количества движения, а также основные принципы статистики частиц в квантовой механике.
Теория b-распада Ферми. Гипотеза Паули естественным образом вошла в теорию b-распада, созданную Ферми в 1934 и позволившую описать явления электронного (b- ) и позитронного (b+ ) распадов и К-захвата. Появилась теоретическая возможность ввести два разных Н.: антинейтрино, рождающееся в паре с электроном, и Н., рождающееся в паре с позитроном.
В теории Ферми b- (b+ )-распад есть превращение нейтрона n (протона р) внутри ядра в протон (нейтрон):
С помощью теории Ферми была рассчитана форма спектра b-электронов, оказавшаяся вблизи верхней границы энергии b-электронов очень чувствительной к массе m n Н. Сравнение теоретической формы спектра с экспериментальной показало, что масса Н. много меньше массы электрона (и, возможно, равна нулю). Теория Ферми объяснила все основные черты b-распада, и её успех привёл физиков к признанию Н. Однако сомнения в существовании этой частицы ещё оставались.
Эксперименты по обнаружению нейтрино. Известны две возможности экспериментального обнаружения Н. Первая — наблюдение обратного b-распада — впервые рассмотрена Х. Бете и Р. Пайерлсом в 1934. Обратным b-распадом называются реакции (существование которых следует из теории Ферми):
происходящие как на свободных, так и на связанных в ядрах нуклонах. Оценка вероятности (сечения) поглощения Н. дала поразительный результат: в твёрдом веществе Н. с энергией, характерной для b-распада, должно пройти расстояние порядка сотен световых лет, прежде чем будет захвачено ядром. В 30—40-х гг. обнаружить такую частицу казалось вообще невозможным.
Другой путь — наблюдение отдачи ядра в момент испускания Н. — впервые рассмотрен советским физиком А. И. Лейпунским. В 1938 А. И. Алиханов и А. И. Алиханьян предложили использовать для этой цели реакцию К-захвата в 7 Be: ядро 7 Be захватывает электрон из К-оболочки атома и испускает Н., превращаясь в ядро 7 Li, 7 Ве (е- , ne )7 Li; при этом, если Н. — реальная частица, 7 Li получает импульс, равный и противоположный по знаку импульсу Н. Первый успешный опыт с этой реакцией был выполнен американским физиком Дж. Алленом в 1942. Оказалось, что энергия отдачи ионов 7 Li согласуется с теоретическим значением (в предположении нулевой массы Н.). Последующие опыты с большей точностью подтвердили этот результат. Существование Н. стало экспериментальным фактом. В физике появилась новая частица, все свойства которой были определены из косвенных экспериментов.

