Категории
Самые читаемые
Лучшие книги » Компьютеры и Интернет » Программирование » Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ - Скотт Майерс

Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ - Скотт Майерс

Читать онлайн Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ - Скотт Майерс

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 38 39 40 41 42 43 44 45 46 ... 73
Перейти на страницу:

r.setWidth(r.width() + 10); // увеличить ширину r на 10

assert(r.height() == oldHeight); // убедиться, что высота r

} // не изменилась

Ясно, что утверждение assert никогда не должно нарушаться. Функция make-Bigger изменяет только ширину r. Высота остается постоянной.

Теперь рассмотрим код, который посредством открытого наследования позволяет рассматривать квадрат как частный случай прямоугольника:

class Square: public Rectangle {…};

Square s;

...

assert(s.width() == s.height()); // должно быть справедливо для

// всех квадратов

makeBigger(s); // из-за наследования, s является

// Rectangle, поэтому мы можем

// увеличить его площадь

assert(s.width() == s.height()); // По-прежнему должно быть справедливо

// для всех квадратов

Как и в предыдущем примере, что второе утверждение также никогда не должно быть нарушено. По определению, ширина квадрата равна его высоте.

Но теперь перед нами встает проблема. Как примирить следующие утверждения?

• Перед вызовом makeBigger высота s равна ширине.

• Внутри makeBigger ширина s изменяется, а высота – нет.

• После возврата из makeBigger высота s снова равна ширине (отметим, что s передается по ссылке, поэтому makeBigger модифицирует именно s, а не его копию).

Так что же?

Добро пожаловать в удивительный мир открытого наследования, где интуиция, приобретенная вами в других областях знания, включая математику, иногда оказывается плохим помощником. Основная трудность в данном случае заключается в том, что некоторые утверждения, справедливые для прямоугольника (его ширина может быть изменена независимо от высоты), не выполняются для квадрата (его ширина и высота должны быть одинаковы). Но открытое наследование предполагает, что все, что применимо к объектам базового класса, – все! – также применимо и к объектам производных классов. В ситуации с прямоугольниками и квадратами (а также в аналогичных случаях, включая множества и списки из правила 38), утверждение этого условия не выполняется, поэтому использование открытого наследования для моделирования здесь некорректно. Компилятор, конечно, этого не запрещает, но, как мы только что видели, не существует гарантий, что такой код будет вести себя должным образом. Любому программисту должно быть известно (некоторые знают это лучше других): если код компилируется, то это еще не значит, что он будет работать.

Все же не стоит беспокоиться, что приобретенная вами за многие годы разработки программного обеспечения интуиция окажется бесполезной при переходе к объектно-ориентированному программированию. Все ваши знания по-прежнему актуальны, но теперь, когда вы добавили к своему арсеналу наследование, вам придется дополнить свою интуицию новым пониманием, позволяющим создавать приложения с использованием наследования. Со временем идея наследования Penguin от Bird или Square от Rectangle будет казаться вам столь же забавной, как функция объемом в несколько страниц. Такое решение может оказаться правильным, но это маловероятно.

Отношение «является» – не единственное, возможное между классами. Два других, достаточно распространенных отношения – это «содержит» и «реализован посредством». Они рассматриваются в правилах 38 и 39. Очень часто при проектировании на C++ весь проект идет вкривь и вкось из-за того, что эти взаимосвязи моделируются отношением «является». Поэтому вы должны быть уверены, что понимаете различия между этими отношениями и знаете, каким образом их лучше всего моделировать в C++.

Что следует помнить

• Открытое наследование означает «является». Все, что применимо к базовому классу, должно быть применимо также и производным от него, потому что каждый объект производного класса является также объектом базового класса.

Правило 33: Не скрывайте унаследованные имена

Шекспир много размышлял об именах. Он писал: «Что в имени тебе? Роза пахнет розой, хоть розой назови ее, хоть нет». И еще писал бард: «Кто доброе мое похитит имя, несчастным сделает меня вовек…» Правильно. И это заставляет нас обратить взор на унаследованные имена в C++.

Вообще-то эта тема относится не столько к наследованию, сколько к областям видимости. Все мы знаем, что в таком коде:

int x; // глобальная переменная

void someFunc()

{

double x; // локальная переменная

std::cin >> x; // прочитать новое значение локальной переменной x

}

имя x в предложении считывания относится к локальной, а не к глобальной переменной, потому что имена во вложенной области видимости скрывают («затеняют») имена из внешних областей. Мы можем представить эту ситуацию визуально:

Когда компилятор встречает имя x внутри функции someFunc, он смотрит, определено ли что-то с таким именем в локальной области видимости. Если да, то объемлющие области видимости не просматриваются. В данном случае имя x в функции someFunc принадлежит переменной типа double, а глобальная переменная с тем же именем x имеет тип int, но это несущественно. Правила сокрытия имен в C++ предназначены для одной-единственной цели: скрывать имена. Относятся ли одинаковые имена к объектам одного или разных типов, не имеет значения. В нашем примере переменная x типа double скрывает переменную x типа int.

Вернемся к наследованию. Мы знаем, что когда находимся внутри функции-члена производного класса и ссылаемся на что-то из базового класса (например, функцию-член, typedef или член данных), компилятор сможет найти то, на что мы ссылаемся, потому что производные классы наследуют свойства, объявленные в базовых классах. Механизм основан на том, что область видимости производного класса вложена в область видимости базового класса. Например:

class Base {

private:

int x;

public:

virtual void mf1() = 0;

virtual void mf2();

void mf3();

...

};

class Derived: public Base {

public:

virtual void mf1()

void mf4();

...

};

В этом примере встречаются как открытые, так и закрытые имена, как имена членов данных, так и функций-членов. Одна из функций-членов – чисто виртуальная, другая – просто виртуальная, а третья – невиртуальная. Это я к тому, что мы говорим именно об именах, а не о чем-то другом. Я мог бы включить в пример еще имена типов, например перечислений, вложенных классов и typedef. В данном контексте важно лишь то, что все это имена. Что они именуют – несущественно. В примере используется одиночное наследование, но, поняв, что происходит при одиночном наследовании, легко будет разобраться и в том, как C++ ведет себя при множественном наследовании.

Предположим, что функция-член mf4 в производном классе реализована примерно так:

void Derived::mf4()

{

...

mf2();

...

}

Когда компилятор видит имя mf2, он должен понять, на что оно ссылается. Для этого в различных областях видимости производится поиск имени mf2. Сначала оно ищется в локальной области видимости (то есть внутри mf4), но там такого имени нет. Тогда просматривается объемлющая область видимости, то есть область видимости класса Derived. И здесь такое имя отсутствует, поэтому компилятор переходит к следующей область видимости, которой является базовый класс. И находит там нечто по имени mf2, после чего поиск завершается. Если бы mf2 не было и в классе Base, то поиск продолжился бы сначала в пространстве имен, содержащем Base, если таковое имеется, и, наконец, в глобальной области видимости.

Данное мной описание правильно, хотя и исчерпывает всю сложность процесса поиска имен в C++. Наша цель, однако, не в том, чтобы узнать о поиске имен столько, чтобы самостоятельно написать компилятор. Достаточно будет, если мы сумеем избежать неприятных сюрпризов, а для этого изложенной информации должно хватить.

Снова вернемся к предыдущему примеру, но на этот раз перегрузим функции mf1 и mf3, а также добавим версию mf3 в класс Derived. Как объясняется в правиле 36, перегрузка mf3 в производном классе Derived (когда наследуется невиртуальная функция) сама по себе подозрительна, но чтобы лучше разобраться с видимостью имен, закроем на это глаза.

class Base {

private:

int x;

public:

virtual void mf1() = 0;

virtual void mf1(int);

virtual void mf2();

void mf3();

void mf3(double);

...

};

class Derived: public Base {

public:

virtual void mf1()

void mf3();

void mf4();

...

};

Этот код приводит к поведению, которое удивит любого программиста C++, впервые столкнувшегося с ним. Основанное на областях видимости правило сокрытия имен никуда не делось, поэтому все функции с именами mf1 и mf3 в базовом классе окажутся скрыты одноименными функциями в производном классе. С точки зрения поиска имен, Base::mf1 и Base::mf3 более не наследуются классом Derived!

1 ... 38 39 40 41 42 43 44 45 46 ... 73
Перейти на страницу:
На этой странице вы можете бесплатно скачать Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ - Скотт Майерс торрент бесплатно.
Комментарии