- Любовные романы
- Фантастика и фэнтези
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Книга теорем 2 - Василий Ленский
Шрифт:
Интервал:
Закладка:
В двухполярном пространстве «плоских» локальностей законы отношений между полярностями будут:
а) А + В = А, в) 2nА = В, с) В + В = В, d) (2n — 1)А = А, где n — число.
Доказательство.
1. Согласно аксиомам 2 и 3 для А + В в соответствие выбираем А, то есть А + В = А.
2. Тогда А + А = В, так как иначе А? В. В + В = В либо А. Если В + В = А, то А? В.
3. Остаётся В + В = В. Это можно обозначить как 0 + 0 = 0.
4. Если А + А = В, то А + А + А = А, так как А + В = А.
5. Соответственно А + А + А + А = В.
6. По индукции получим для нечётного числа А + А + …+ А = А. Для чётного числа А + А + …+ А = В.
Иначе, можно записать А +А = 0, А + А + А = А, 0 + 0 = 0. В общем 2nА = 0, (2n — 1)А = А. n0 = 0. Такая лока управляет количеством. Например, если 5А + 7А = 12А, то есть 5А + 7А = 0. 6А + 9А = А.
Пример 1.
А + А + А = А будет «Ты это другое твоего друга».
Примечание.
Альтернативность А + В = В даёт формально те же самые законы отношений, но, с позиций овеществления, альтернативные локи, где роль 0 занимает либо А, либо В не безразлично. Альтернативные локи взаимно уничтожают друг друга тем, что при их объединении выполнится А? В.
Объёмная поляризация
1. Согласно аксиомам 1 обозначим полярные объекты А и В. Третьего не дано.
2. Согласно аксиомам 2 и 3 эти объекты будут взаимодействовать с постановкой в соответствие некоторого объекта:
а) (А)*(В) = (А), или (В) так как третьего не дано;
в) (А)*(А) = (А), или (В);
с) (В)*(В) = (А), или (В).
Теорема 7.Если в двухполярной локе при взаимодействии объектов А и В результатом будет А, то (А)*(А) = (В), а так же (В)*(В) = (В).
Доказательство.
1. По условию (А)*(В) = А. Тогда (А)*(А) не может дать в результате А, иначе мы придём к противоречию А? В. Поэтому (А)*(А) = В. Здесь? знак тождества.
2. В свою очередь (В)*(В) не может дать результатом В, иначе, если (В)*(В) = А, то при учёте условия будет А? В. Это противоречит аксиоме 1.
3. Имеем непротиворечивыми высказывания:
а) (А)*(В) = А;
б) (А)*(А) = В;
в) (В)*(В) = В.
Пример 1.
Аналогом этому являются законы отношений в алгебре действительных чисел. Если В? (+), а также А? (?), то по пункту 3 будет:
а) (+)*(?) = (?); б) (?)*(?) = (+); в) (+)*(+*) = (+).
Кстати, случай б) выделяется в математике как «двойные числа». Здесь кроется та слепота, когда количества и поныне не различают от полярностей, то есть качеств.
Пример 2.
Соответствие этому мы найдём в линейном мышлении. Если А это поляризация отрицательного «зло», «враг», «несчастье», «болезнь» и т. п., а так же В имеет положительную поляризацию «добро», «друг», «счастье», «здоровье» и т. п., то согласно пункта 3 будет например:
а) «болезнь друзей это плохо» или «зло в среде друзей это плохо» и т. п.;
б) «болезнь врагов это хорошо» или «зло в стане врагов это хорошо» и т. п.;
в) «здоровье друзей это хорошо» и т. п.
Пример 3.
Если взять А? «отрицанию»; В? «утверждению», то «отрицание отрицания есть утверждения» (Закон логики).
Пример 4.
Единица здесь кроме роли — остановки процесса мышления — играет роль «нейтрального» объекта. Например, из (А)*(0) = А будет, к примеру «человек в бесконечном Космосе» = «человек».
Теорема 8.Двухполярная лока имеет да «зеркальных» вида.
Доказательство.
1. В предыдущем условии (А)*(В) = А взято произвольно. Вполне вероятно будет (А)*(В) = В.
2. В свою очередь по этому условию (А)*(А) не может дать результатом В, иначе, А? В. Следовательно, (А)*(А) = А, так как третьего не дано.
3. Остаётся (В)*(В), которое не может быть равноценным В, иначе А? В. Значит (В)*(В) = А.
4. Имеем непротиворечивыми в системе и «зеркальные» по отношению к пункту 3 теоремы 1 высказывания:
а) (А)*(В) = В;
б) (А)*(А) = А;
в) (В)*(В) = А.
Примечание: В математике системы отношений п.3 теоремы 1 и п.4 теоремы 2 называют изоморфными и сбрасывают на тождество. Однако, как вы увидите на примере 4, система 4 теоремы 2 имеет жизненное значение.
Пример 5.
В символах «положительной» и «отрицательной» поляризаций и взятии значений «убийство», «соперник», «несчастье» и т. п. как «отрицательные», а «благополучие», «друзья», «развитие» и т. п., как «положительные» будем иметь:
а) «невзгоды друзей это хорошо»;
б) «болезнь врагов это плохо»;
в) «благополучие друзей ведёт их к деградации».
Логика таких высказываний очевидна по опыту жизни, когда мудрому становится понятно, что враги и соперники развивают; друзья «убаюкивают» бдительность. Благополучие лишает человека шанса развиваться. Эти правила используются при воспитании молодёжи в монастырях.
Теорема 9.Альтернативные системы отношений полярных объектов в двухполярной локе взаимно исключают друг друга.
Доказательство.
1. Имеем две возможных системы:
А).
а) (А)*(В) = В;
б) (А)*(А) = А;
в) (В)*(В) = А.
В).
а) (А)*(В) = А;
б) (А)*(А) = В;
в) (В)*(В) = В
2. Если взять высказывания на сопоставление, то они полярно противоположные так, что получим А? В, что исключено по аксиоме 1.
Сопоставление.
Системы А) и В) можно для наглядности представить в виде привычных полярностей «плюс» и «минус». Соответственно будем иметь:
1А)
а) (+)*(?) = (?);
б) (?)*(?) = (+);
в) (+)*(+*) = (+).
2А)
а) (+)*(?) = (+);
б) (?)*(?) = (?);
в) (+)*(+) = (?).
Примечание 1. Система 1А) распространена в современной науке. Система 2А) в науке не встречается. Высказывания, соответствующие системе 2А), можно встретить в религиях, высказываниях мудрецов, нравственных устоях по принципу «не убий».
Примечание 2. Система 1А) пронизывает всю науку цивилизации и является её ядром. Она не только в математике, но и в логиках разных видов, так как любая из существующих логик содержит в себе двухполярные законы отношений и свойства линейного ума.
Естественные науки и техника также заложили в основу двухполярность. Даже в современных компьютерах физической базой является «положительный» и «отрицательный» электрические потенциалы.
Пример 6.
В пример взаимного исключения высказываний двух зеркальных лок можно привести: 1А) «Тот, кто уничтожает врагов, тот герой»; 2А) «Тот, кто уничтожает врагов, тот остаётся убийцей». При совмещении этих высказываний получится «герой он и есть убийца».
Трёхполярная поляризация
История
Не задумываясь, мы проводим операции вида +а — а = 0. Никому в голову не приходит, что здесь три полярности +, -, 0.
Всякий раз совершается «срез», когда появляется «два обратных элемента», таких, что, например, + 6–4 = + 2. Здесь +4–4 = 0. Куда исчезли +4 и -4?
[править]Плоскостная поляризация
Такая лока имеет три полярности. Обозначим их А, В, С. Четвертого не дано.
Теорема 3.В трёхполярной локе законы отношений будут:
а) А + В = С, А + С = А, В + С = В.
b) С + С = С.
Доказательство.
1. Если, согласно аксиомам 2 и 3, А + В = А или В, то эти полярности принимают роль 0. Остаётся А + В = С.
2. Точно так же, если А + С = С, то А принимает роль нуля, но ноль уже определён. Если А + С = В, то 2А = С и 2А = В. Остаётся А + С = А.
3. Подобными рассуждениями получим В + С = В.
4. И окончательно из п.1, п.2 и п.3 будет С + С = С. А + А = В, иначе, если А + А = А, то А превращается в 0, если А + А = С, то это противоречит п.1.
5. Следовательно, А + А + А = 0.
6. Такими же рассуждениями В + В = А и В + В + В = 0.
7. В дальнейшем 3A = 0, 3B = 0, 4А = А, 4В = В.
8. В общем (2n + 3)A = 0, (2n + 3)B = 0, (2n+ 4)A = A, (2n + 4)B = B, но так, что каждые 2А = В, 2В = А.
История
Хотя в алгебре «действительных чисел» используются отношения а) (+)*(+) = +, б) (+)*(-) = —, в) (-)*(+) = —, г) (-)*(-) = +, но в теории групп уже появляется три полярных объекта а/а = е. Здесь е — единица такая, что (е)*(е) = е, (е)*(а) = а.
Если посмотреть внимательно, то + выполняет роль единицы, но в двухполярном отношении, так, что (+)*(+) = +.
Конечно, в теорию групп вошли понятия из «арифметического опыта», но то, что деление «растягивает» пространство, увеличивая его на одну полярность, никто не заметил. Если бы это математики заметили, то алгебра трёхполярных отношений выглядела бы иначе, чем алгебра действительных чисел. Кстати, именно, на связь с действительным миром нацелились теория групп, кольцо, поле, тело и прочие изобретения «опосля», то есть после опыта в арифметике.
Объёмная поляризация
Согласно аксиоме 1 в локе можно взять три полярных объекта А, В, С. Четвёртого не дано. Законы и правила взаимодействий между этими полярностями не станем постулировать или переносить из двухполярной системы отношений, как это делают современные математики, логики, философы и обыденно мыслящие люди. Будем предполагать, что законы взаимодействий могут оказаться иными, чем в интеллекте. Согласно аксиоме 2 взаимоотношениями будут: