Большая Советская Энциклопедия (ПР) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
sn = X1 + X2 +... + Xn ,
An и B2 n — соответственно математическое ожидание
An = Е sn = Е X1 + E X2 +... + E Xn ,
и дисперсия
B2 n = D sn -= D X1 +D X2 +... + D Xn ,
суммы sn . Говорят, что последовательность (*) подчиняется закону больших чисел, если при любом e > 0 вероятность неравенства
стремится к нулю при n ® ¥.
Широкие условия приложимости закона больших чисел найдены впервые П. Л. Чебышевым (в 1867) (см. Больших чисел закон ). Эти условия затем были обобщены А. А. Марковым (старшим). Вопрос о необходимых и достаточных условиях приложимости закона больших чисел был окончательно решен А. Н. Колмогоровым (1928). В случае, когда величины Xn имеют одну и ту же функцию распределения, эти условия, как показал А. Я. Хинчин (1929), сводятся к одному: величины Xn должны иметь конечные математические ожидания.
Центральная предельная теорема . Говорят, что к последовательности (*) применима центральная предельная теорема, если при любых z1 и z2 вероятность неравенства
z1 Bn < sn — An < z2 Bn
имеет пределом при n ® ¥ — величину
(см. Нормальное распределение ). Довольно общие достаточные условия применимости центральной предельной теоремы были указаны Чебышевым (1887), но и в его доказательстве обнаружились пробелы, восполненные лишь позже Марковым (1898). Решение вопроса, близкое к окончательному, было получено А. М. Ляпуновым (1901). Точная формулировка теоремы Ляпунова такова: пусть
ck = E |Xk — Е Хк |2+ d , d > 0
Cn = c1 + c2 +... + cn .
Если отношение стремится к нулю при n ® ¥, то к последовательности (*) применима центральная предельная теорема. Окончательное решение вопроса об условиях приложимости центральной предельной теоремы получено в основных чертах С. Н. Бернштейном (1926) и дополнено В. Феллером (1935).
Из др. направлений работ в области П. т. можно отметить следующие.
1) Начатые Марковым и продолженные Бернштейном и др. исследования условий приложимости закона больших чисел и центральной предельной теоремы к суммам зависимых величин.
2) Даже в случае последовательности одинаково распределённых случайных величин можно указать простые примеры, когда суммы имеют в пределе распределение, отличное от нормального (речь идёт о невырожденных распределениях, т. е. о распределениях, не сосредоточенных целиком в одной точке). В работах советских математиков А. Я. Хинчина, Б. В. Гнеденко, французских математиков П. Леви, В. Дёблина и др. полностью изучены как класс возможных предельных распределении для сумм независимых случайных величин, так и условия сходимости распределений сумм к тому или иному предельному распределению.
3) Значительное внимание уделяется т. н. локальным П. т. Пусть, например, величины Xn принимают лишь целые значения. Тогда суммы sn принимают также только целые значения и естественно поставить вопрос о предельном поведении вероятностей Pn (m ) того, что sn = m (где m — целое). Простейшим примером локальной П. т. может служить локальная теорема Лапласа (см. Лапласа теорема ).
4) П. т. в их классической постановке описывают поведение отдельной суммы sn с возрастанием номера n. Достаточно общие П. т. для вероятностей событий, зависящих сразу от нескольких сумм, получены впервые Колмогоровым (1931). Так, например, из его результатов следует, что при весьма широких условиях вероятность неравенства
имеет пределом величину
(z > 0)
5) Перечисленные выше П, т. относятся к суммам случайных величин. Примером П. т. иного рода могут служить П. т. для членов вариационного ряда . Эти П. т. подробно изучены советскими математиками Б. В. Гнеденко и Н. В. Смирновым.
6) Наконец, к П. т. относят также и теоремы, устанавливающие свойства последовательностей случайных величин, имеющие место с вероятностью, равной единице (см., например, Повторного логарифма закон ).
Лит.: Гнеденко Б. В., Колмогоров А. Н., Предельные распределения для сумм независимых случайных величин, М. — Л., 1949; Ибрагимов И. А., Линник Ю. В., Независимые и стационарно связанные величины, М., 1965; Прохоров Ю. В., Розанов Ю. А., Теория вероятностей. Основные понятия. Предельные теоремы. Случайные процессы, 2 изд., М., 1973.
Ю. В. Прохоров.
Предельные углеводороды
Преде'льные углеводоро'ды , то же, что насыщенные углеводороды .
Предельный цикл
Преде'льный цикл системы дифференциальный уравнений 2-го порядка
— замкнутая траектория в фазовом пространстве xOy , обладающая тем свойством, что все траектории, начинающиеся в достаточно узкой кольцеобразной ее окрестности, неограниченно приближаются к этой траектории или при t ® +¥ (устойчивый П. ц.), или при t ® -¥ (неустойчивый П. ц.), или часть из них при t ® +¥, а остальные — при t ® -¥ (полуустойчивый П. ц.). Например, система
(r и j — полярные координаты), общее решение которой r = 1 – (1 – r 0 )e -t , j = j0 + t (где r 0 ³ 0), имеет устойчивый П. ц. r = 1 (см. рис. ). Понятие П. ц. переносится также на систему n -го порядка. С механической точки зрения устойчивый П. ц. соответствует устойчивому периодическому режиму системы. Поэтому разыскание П. ц. имеет важное значение в теории нелинейных колебаний.
Лит.: Понтрягин Л. С., Обыкновенные дифференциальные уравнения, 3 изд., М., 1970; Андронов А. А., Витт А. А., Хайкин С. Э., Теория колебаний, 2 изд., М., 1959.
Рис. к ст. Предельный цикл.
Предивинск
Преди'винск , посёлок городского типа в Большемуртинском районе Красноярского края РСФСР. Расположен на правом берегу Енисея, в 183 км ниже Красноярска. Леспромхоз.
Предикат (свойство отд. предмета)
Предика'т (от позднелат. praedicatum— сказанное), то же, что свойство; в узком смысле — свойство отдельного предмета, например «быть человеком», в широком смысле — свойство пары, тройки, вообще n- ки предметов, например «быть родственником». П. в широком смысле называют также отношениями.
Исторически понятие о П. явилось следствием логического анализа высказываний естественного языка, т. е. выяснения их логической структуры, выяснения того, какой логикой может быть выражен (формализован) смысл этих высказываний. Идея выделения логической структуры речи, в отличие от грамматической, для нужд логической дедукции принадлежит Аристотелю. В аристотелевской и в последующей «традиционной» логике П. понимался в узком смысле как один из двух терминов суждения, а именно тот, в котором нечто говорится о предмете речи — субъекте. Форма сказывания — предикативная связь — сводилась при этом к атрибутивной связи, т. е. выражала «присущность» предмету некоторого признака. Аристотель выделял 4 типа признаков, способных играть роль П.: родовые, видовые, собственные и случайные. Это т. н. предикабилии — типы сказуемых.
Логический анализ фраз естественного языка на том уровне представлений о логической дедукции, который был характерен для аристотелевской (и традиционной) логики, ограничивался, т. о., для выражения смысла высказываний логикой одноместных П. (логикой свойств в узком смысле). Это существенно ослабляло «выразительные возможности» логики и служило препятствием для адекватной формализации тех объективных связей между предметами, которые, будучи мыслимыми в виде отношений (свойств в широком смысле) между соответствующими понятиями, лежат в основе логической правильности умозаключений об отношениях — основных умозаключений в науке. Устранение указанного препятствия и усиление выразительных средств формализма современной логики связано, в частности, с восходящей к работе Г. Фреге «Исчисление понятий» (1879) новой трактовкой П. Главная идея этой трактовки — рассмотрение отношения предикации как частного случая функциональной зависимости. Это обеспечивает более ёмкое, чем аристотелевское, отображение смысловой структуры фраз естественного языка в формализме субъектно-предикатного типа и одновременно дальнейшее развитие самого этого формализма на пути сближения языков логики и математики.