1. Современная наука о природе, законы механики - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Таким образом, первый результат нашего эксперимента — одинаковые тела имеют одинаковую скорость. Но предположим теперь, что тела сделаны из различного материала, скажем один из меди, а другой из алюминия, но массы их равны. Мы будем предполагать, что если проделать наш опыт с двумя равными массами, то несмотря на то, что тела не одинаковы, скорости их тем не менее будут равны. В этом месте мне могут возразить: «Но ведь вы можете сделать и обратное. Вам незачем было это предполагать. Вы можете определить массы как равные, если они в нашем эксперименте приобретают одинаковую скорость». Давайте же примем это предложение и устроим небольшой взрыв между кусочком меди и очень большим куском алюминия, который настолько тяжел, что едва может быть сдвинут с места, тогда как медь стремительно отлетает. Это говорит о том, что алюминия слишком много. Уменьшим его количество и оставим лишь совсем маленький кусочек. Если устроить взрыв снова, то отлетит уже алюминий, а медь почти не сдвинется. Значит, сейчас слишком мало алюминия. Очевидно, что должно существовать какое-то промежуточное количество, которое можно постепенно подбирать, пока скорости разлета не станут равными. Теперь мы можем сказать, что раз равны скорости этих кусков, то массы их мы тоже будем считать равными (т. е. фактически мы переворачиваем сделанное ранее утверждение, что равные массы будут иметь одинаковую скорость). Самое интересное здесь то, что физический закон превращается просто в определение. Но тем не менее какой-то физический закон здесь все же есть, и если мы примем такое определение равенства масс, то этот закон можно найти следующим образом.
Пусть из предыдущего эксперимента нам известно, что два куска вещества А и В (медь и алюминий) имеют равные массы. Возьмем теперь третье тело, скажем кусок золота, и выровняем его массу (точно так же, как это делалось раньше) с массой меди. Если теперь в нашем эксперименте заменить медь золотом, то логически у нас нет никаких оснований утверждать, что эти массы (алюминия и золота) равны. Однако опыт показывает, что такое равенство имеет место. Таким образом, опытным путем мы обнаружили новый закон: если две массы порознь равны третьей (т. е. в нашем опыте они разлетаются с равными скоростями), то они равны между собой. (Этот закон вовсе не следует из подобного утверждения о величинах в математике; там оно просто постулируется.) Видите, как легко по неосторожности сделать безосновательное заключение. Утверждение, что массы равны, когда равны скорости,— это еще не определение; ведь при этом мы предполагаем справедливость математических законов равенства, что в свою очередь приводит к предсказанию результатов некоторых экспериментов.
Возьмем еще один пример. Пусть при некоторой силе взрыва установлено, что масса А равна массе В. А что произойдет, если увеличить силу взрыва? Будут ли равны скорости разлета в этом случае? Логика здесь снова бессильна, но опыт говорит, что это действительно так. Снова мы получаем закон, который утверждает: если из равенства скоростей двух тел делается заключение о равенстве их масс, то это равенство не зависит от величины скорости. Из этих примеров видно, что то, что сначала казалось просто определением, в действительности предполагает справедливость каких-то законов природы.
Итак, в дальнейших рассуждениях мы будем считать, что равные массы разлетаются в противоположные стороны с равными скоростями, если между ними происходит взрыв. А что произойдет, если мы обратим задачу, т. е. если два одинаковых тела, летящие навстречу друг другу с равными скоростями, сталкиваются и слипаются вместе? Как будут они двигаться? Здесь опять на помощь приходят соображения симметрии (т. е. что между левой и правой сторонами нет никакого различия), из которых следует, что образовавшееся тело должно стоять на месте. Мы будем также предполагать, что два тела с равной массой, летящих навстречу друг другу, даже если они сделаны из различного материала, после столкновения и слипания остановятся.
§ 3. Импульс всё-таки сохраняется!
Можно экспериментально проверить наши предположения о том, что, во-первых, покоящиеся два тела с равной массой, разорванные взрывом, полетят в разные стороны с равной скоростью и, во-вторых, что два тела, обладающие равными скоростями и массами, при соударении и слипании останавливаются. Такую проверку можно сделать с помощью замечательного устройства — воздушного желоба (фиг. 10.1).
Фиг. 10.1. Воздушный желоб (вид с торца).
В этом устройстве нет никаких трущихся деталей — вопрос, который очень беспокоил Галилея. Он не мог поставить эксперимента со скользящими телами, ибо они не скользили свободно, но о помощью чудесного желоба мы можем теперь избавиться от трения. Наши тела будут лететь без помех, а скорость их, согласно предвидению Галилея, будет оставаться постоянной. Это достигается тем, что тело поддерживается воздушной подушкой, а поскольку трение о воздух очень мало, то тело планирует практически с постоянной скоростью, если на него не действуют никакие силы. Возьмем сначала два скользящих бруска, вес или массы которых с большой точностью равны друг другу (практически измеряется вес, но он, как вы знаете, пропорционален массе), и поместим между ними небольшой взрыватель в закрытом цилиндре (фиг. 10.2).
Фиг. 10.2. Продольный разрез скользящего бруска, скрепленного со взрывным цилиндром.
Всю эту систему устанавливаем в центре желоба и электрической искрой поджигаем взрыватель. Что же произойдет? Если массы брусков одинаковы, то они, разлетевшись в стороны, одновременно достигнут концов желоба. Там они отскакивают от ограничителей, сталкиваются и слипаются в центре, точно в том же месте, откуда разлетелись (фиг. 10.3).
Фиг. 10.3. Схема эксперимента с равными массами.
Это интересный опыт. И в действительности происходит все так, как мы рассказали.
Теперь на очереди проблема посложнее. Допустим, мы имеем две массы, причем одна движется со скоростью v, а другая стоит на месте. Затем первая ударяет по второй и они слипаются. Что произойдет дальше? Образуется одно тело с массой 2m, которое как-то будет двигаться. Но с какой скоростью? Вот в чем вопрос. Чтобы ответить на него, предположим, что мы едем вдоль желоба на автомобиле. Все законы физики должны при этом выглядеть точно так же, как и прежде, когда мы стояли на месте. Мы начали с того, что если столкнуть два тела с равными массами и одинаковыми скоростями v, то после слипания они останавливаются. А теперь представьте, что в это время мы катим на автомобиле со скоростью —v. Какую же картину Мы увидим? Ясно, что одно из тел, поскольку оно все время летит рядом с автомобилем, будет казаться нам неподвижным. Второе же, которое движется навстречу со скоростью v, покажется нам несущимся с удвоенной скоростью 2v (фиг. 10.4).
Фиг. 10.4, Неупругое соударение равных масс.
Наконец, образовавшееся после соударения и слипания тело будет казаться нам летящим со скоростью v. Отсюда мы делаем вывод, что если тело, летящее со скоростью 2v, ударяется о покоящееся тело той же массы и прилипает к нему, то образовавшееся тело будет двигаться со скоростью v, или (что математически то же самое) тело со скоростью v, ударяясь о покоящееся тело той же массы и прилипая к нему, образует тело, движущееся со скоростью v/2. Заметьте, что если умножить массы тел на их скорости и сложить их, то получим одинаковый результат как до столкновения (mv+0), так и после (2m·v/2). Вот как обстоит дело, если тело, обладающее скоростью v, столкнется с телом, находящимся в покое.
Точно таким же образом можно определить, что произойдет, когда сталкиваются два одинаковых тела, каждое из которых движется с произвольной скоростью.
Пусть одно тело летит со скоростью v1 , а другое — со скоростью v2 в том же направлении (v1>v2). Какова будет их скорость после соударения? Давайте снова сядем в машину и поедем, скажем, со скоростью v2. Тогда одно из тел будет казаться нам стоящим на месте, а второе — налетающим на него со скоростью v1-v2. Эта ситуация уже знакома нам, и мы знаем, что после соударения скорость нового тела по отношению к машине будет равна 1/2(v1- v2). Что же касается действительной скорости относительно земли, то ее можно найти, прибавив скорость автомобиля: v=1/2 (v1-v2)+v2 или 1/2(v1+v2) (фиг. 10.5).