- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Наблюдения и озарения или Как физики выявляют законы природы - Марк Перельман
Шрифт:
Интервал:
Закладка:
Оказалось, что многие процессы в кристаллах (и не только) можно рассматривать так, как будто вся энергия, полученная ими, состоит из квантов, распределение по энергии которых определяются формулами Планка, а в выражении для импульса скорость света заменена скоростью звука (отсюда и их название фонон, введенное И. Е. Таммом): дело в том, что частота их колебаний, со скоростью звука, ограничивается расстоянием между соседними атомами кристалла. Они, конечно, не могут существовать вне кристалла, и поэтому их называют квазичастицами. А такие процессы как прохождение зарядов или тепловых волн можно рассматривать как взаимодействие фононов с электронами или друг с другом.
Доказать существование фононов прямым опытом, аналогичным опыту Комптона, удалось намного позже. Для этого рассматривалось рассеяние нейтронов внутри кристалла: поскольку нейтрон не имеет электрического заряда, он не взаимодействует с электронами, и только незначительная часть нейтронов проникает так глубоко в атом, чтобы рассеяться на ядрах. Анализ этого рассеяния показал, что для него законы сохранения энергии и импульса выполняются так, как если бы энергия и импульс фонона определялись формулами Планка и Эйнштейна. (Эти эксперименты провели Б. Н. Брокхауз (р. 1918) и К. Г. Шалл (р. 1915), удостоенные Нобелевской премии в 1994 г.)
Глава 2
Радиоактивность, атомы, ядра
1. ОткрытиеАнтуан-Анри Беккередь (1852–1908, Нобелевская премия 1903 г.) был физиком в третьем поколении: его дед и отец были членами Французской академии и даже, как позже и он сам, занимали некоторое время должность ее президента. Физиками стали позже его сын и внучка, и все пять поколений исследовали явления люминесценции (от латинского «люмен» — свет, светимость тел, вызываемая различными физическими причинами).
Когда в 1895 г. были открыты рентгеновские лучи, то, поскольку катодные лучи вызывают также люминесценцию катода, покрытого подходящим веществом, можно было предположить, что люминесценция и рентгеновские лучи создаются одним и тем же механизмом. Беккерель решил выяснить, не сопровождается ли, наоборот, люминесценция рентгеновским излучением, поэтому он поместил на фотопластинки, завернутые в плотную черную бумагу, люминесцентный материал, имевшийся у него под рукой — соль урана, и несколько часов держал этот пакет на ярком солнечном свете.
Оказалось, что излучение прошло сквозь бумагу и засветило фотопластинку — вывод был очевидным: соль урана испускает и видимый свет, и рентгеновские лучи после солнечного облучения. Но вдруг, к удивлению Беккереля, оказалось, что пластинки, на которых лежали соли урана, засвечиваются и без облучения солнечным светом: это обнаружилось случайно — он решил проверить качество пластинок, пролежавших несколько дней в шкафу из-за пасмурной погоды. Следовательно, их засвечивали не рентгеновские лучи, а что-то иное. Беккерель пробовал класть на пластинки и всякие другие вещества — люминесцентные и нелюминесцентные: пластинки засвечивались только при наличии урана и тем сильнее, чем ближе они были к нему (май 1896 г.).
Интересно заметить, что совершенно разные явления, радиоактивность и радиосвязь, были открыты почти одновременно и поэтому получили такие близкие названия: оба, как и радиус в геометрии, от латинского «луч».
Так была открыта радиоактивность.
2. Пьер и Мария КюриПьер Кюри (1859–1906) вместе с братом, Жаком Кюри, минералогом по специальности, открыл пьезоэффект, или явление пьезоэлектричества — появление зарядов на гранях некоторых кристаллов при их механическом сжатии или растяжении, и обратный эффект — деформацию кристаллов при их заряжании (пьезоэлементы нашли затем широкое применение в технике звукозаписи). Пьеру Кюри принадлежит общий принцип выявления симметрии кристаллов при воздействии на них внешних полей, закон Кюри-Вейсса определяет исчезновение ферромагнитных свойств с ростом температуры и т. д.
Мария Склодовская (1867–1934) приезжает из Варшавы в Париж, оканчивает университет, где учится у Беккереля, выходит в 1895 г. замуж за Пьера Кюри и приступает в его лаборатории к исследованиям радиоактивных минералов. Начинает она с солей урана, радиоактивность которых установил Беккерель, и в 1897 г. доказывает, что это свойство связано именно с атомами урана, а не с типом химического соединения, в которое входит уран.
Работа по исследованию радиоактивности солей урана была очень тяжелой физически (и опасной для здоровья, о чем еще не было известно): нужно было переработать вручную тонны урановой руды (ранее она использовалась только в производстве красок), для того, чтобы последовательными химическими реакциями выделить нужные компоненты — вначале только уран и торий, который также оказался радиоактивным.
И тут выяснилось, что некоторые части пустой, т. е. очищенной от урана и тория породы все же радиоактивны. Пришлось предположить, что эта порода содержит еще какие-то, возможно, новые радиоактивные элементы. К работе подключился и Пьер Кюри, и в 1898 г. они открывают два новых элемента — полоний (по латинскому названию Польши) и радий (он примерно в миллион раз активней урана), а также явление наведенной радиоактивности атомов других веществ, находящихся вблизи источников этого излучения. Соль радия испускала голубоватое свечение и тепло. Это фантастически выглядевшее вещество привлекло к себе внимание всего мира.
Пьер Кюри сосредотачивается на исследовании физических параметров излучения, Мария Кюри — на химических свойствах веществ.
Радиоактивное излучение пространственно изотропно, т. е. одинаково распространяется во все стороны. Как же его исследовать? Поместив небольшое количество радия в толстый и длинный металлический стакан, стенки которого поглощают излучение, они таким образом получают источник направленного радиоактивного излучения.
Оказалось, что это излучение разделяется в магнитном поле на три части. (Одновременно с ними этот эффект установил Э. Резерфорд и назвал эти три вида излучения по первым трем буквам греческого алфавита: альфа, бета и гамма, но до сих пор в учебниках приводится рисунок этих трех видов лучей, взятый из диссертации М. Кюри 1903 г.) Из них альфа-лучи положительно заряжены, а если их собрать в пробирку, то там, как выяснилось позже, появляется газ гелий, т. е. альфа-лучи — это поток ядер гелия; бета-лучи, их проще анализировать, — это поток электронов, гамма-лучи — это высочастотное электромагнитное излучение.
Далее Пьер Кюри научился посылать потоки этих лучей в калориметр, который они нагревают, и таким образом возможно измерить энергию излучения. А однажды он надолго забыл в жилетном кармашке ампулу с микрограммом радия: под этим местом появилась язвочка — следовательно, радиоактивность биологически активна, а может быть, эта особенность пригодится в медицине?
К 1902 г. Мария Кюри получила несколько дециграммов чистой соли радия, а в 1910 — уже металлический радий. В 1903 г. супруги Кюри удостаиваются, вместе с А. Беккерелем, Нобелевской премии по физике за открытие радиоактивности, в 1911 Марии Кюри присуждается Нобелевская премия по химии за получение металлического радия. (Пьер Кюри трагически погиб в 1906 г. — на него налетела выскочившая из-за поворота телега с ломовой лошадью, его кафедра была передана Мария Кюри и она стала первой женщиной — профессором Сорбонны.) Отметим, что в своей Нобелевской лекции Пьер Кюри указал на потенциальную опасность, которую представляют радиоактивные вещества, попади они не в те руки, и добавил, что «принадлежит к числу тех, кто вместе с Нобелем считает, что новые открытия принесут человечеству больше бед, чем добра». Заметим также, что супруги Кюри решительно отказались от патентов и от перспектив коммерческого использования радия: по их убеждению, это противоречило бы духу науки — свободному обмену знаниями.
Мария Кюри до конца жизни продолжала интенсивную научную работу: было изучено множество радиоактивных веществ, создана аппаратура и методики таких исследований, впервые были опробованы применения радиоактивности в медицине и т. д. Умерла она от лейкемии — это следствие радиационного заражения в ходе ее исследований.
3. Проблема определения исторических и природных датОдна из очень привлекательных сторон физики состоит в том, что ее достижения оказываются вдруг решающими в исследовании совершенно иных проблем. Одной из таких проблем является точное датирование исторических и геологических событий, а также изменений климата на протяжении веков или тысячелетий и даже геологических эпох.
Помимо анализа письменных источников, сравнения находок в разных раскопках, использования стратиграфии, т. е. анализа относительного расположения слоев с теми или иными находками, археологи и палеоклиматологи уже давно используют методы дендрохронологии — в стволе многих пород деревьев ясно различимы ежегодные слои, по толщине которых можно судить о погодных условиях, а нахождение, к примеру, вулканической пыли в них позволяет увязать эти слои с известными датами извержений вулканов и т. д. (напомним, что возраст некоторых сейквой в Северной Америке превышает 4 тыс. лет). Аналогичный метод применим и к анализу ежегодных отложений слоев осадков на дне некоторых озер. Для более древних дат все большую популярность приобретает анализ слоев карбонатов, откладываемых в колониях кораллов: он, в частности, позволяет даже оценить количество дней в году в прошлом (в некоторых кораллах различимы ежедневные слои), т. е. замедление скорости вращения Земли — оказывается, в середине Девона продолжительность года была порядка 400 дней.

