- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Физика движения. Альтернативная теоретическая механика, или Осознание знания. Книга в двух томах. Том II - Александр Астахов
Шрифт:
Интервал:
Закладка:
Из выражения (66.3) следует, что ускорение Кориолиса – это изменение абсолютной скорости в направлении перпендикулярном радиусу, которое обеспечивается двумя самостоятельными независимыми ускорениями:
1. Ускорением, характеризующим приращение линейной скорости переносного вращения по абсолютной величине;
2. Ускорением, характеризующим приращение радиальной скорости относительного движения по направлению.
Фактически это означает, что приращение линейной скорости в направлении переносного вращения по абсолютной величине никак не сказывается на приращении радиальной скорости относительного движения по направлению, и наоборот – центростремительное ускорение, характеризующее изменение радиальной скорости относительного движения по направлению не имеет никакой корреляции с приращением линейной скорости переносного вращения по абсолютной величине. Однако в реальной действительности эти приращения тесно взаимосвязаны между собой, что проявляется, хотя бы в их равенстве по абсолютной величине. Более того можно показать, что это равенство не случайно, т.к. они представляют собой одну и ту же физическую величину.
На рисунке (4.1.1) показано, что годограф вектора радиальной скорости, определяющийся вдоль траектории переносного вращения, совпадает с годографом вектора переносной скорости, который также определяется вдоль траектории переносного вращения. Это означает, что каждая точка годографа радиальной скорости, изменяющейся по направлению, одновременно является и точкой годографа переносной скорости, изменяющейся по абсолютной величине. Остаётся только показать, что это один и тот же годограф, т.е. нам необходимо показать корректность совмещения этих годографов в один единый годограф векторов скоростей радиального движения и окружного переносного движения.
Рис. 4.1.1
Рисунок (4.1.1) принципиально полностью идентичен рисунку (159), приведенному в работе Матвеева (см. фотокопии выше). На нём выполнены лишь некоторые дополнительные построения, которые у Матвеева отсутствуют. В точке (А) показано традиционное расположение векторов этих скоростей, принятое в классической векторной геометрии. При этом, хотя все геометрические операции сложения и вычитания векторов в классической векторной геометрии осуществляются на уровне стрелок исходных векторов, результат их геометрического сложения или вычитания снова переносится в точку на траектории. Поэтому мы не погрешим против истины, если перенесём вектор (Ve1) из точки (А) в точку (В) так, чтобы стрелки векторов переносной и относительной скоростей совместились в точке (В).
Далее вся полученная связка векторов (Vr1; Vе1) с совмещёнными стрелками переносится параллельно самой себе в точку (В1), в которой тело оказалось бы, двигаясь с постоянной по условию задачи радиальной скоростью и с постоянной окружной переносной скоростью, соответствующей окружной скорости тела в точке (А). Естественно, что при этом никакого приращения ни окружной переносной скорости по абсолютной величине, ни радиальной скорости по направлению не происходит, что соответствует сходу тела с траектории поворотного движения с постоянной поворотной скоростью, в результате чего образуется девиация поворотного движения в виде окружного отрезка (В1, В2).
Для того чтобы вернуть тело из точки девиации (В1) на реальную траекторию абсолютного и поворотного движения, которые пересекаются в точке (В2), необходимо сообщить ему поворотное ускорение, которого оно было лишено в течении времени образования девиации. Для этого достаточно поворачивать всю связку векторов (Vr1; Vе1) с угловой скоростью переносного вращения относительно точки (А1) в течение времени образования этой девиации. При этом на рисунке видно, что стрелки вектора (Vr1) и вектора (Vе1), совмещённые в одной общей точке центра масс тела формируют одни и те же точки искомого приращения поворотной скорости в виде общего годографа (ΔVпов=ΔVr=ΔVe), он же девиация поворотного движения.
По окончании времени ликвидации девиации тело и соответственно стрелки векторов всей связки (Vr1; Vе1) займут какое-то положение (В2). Для того чтобы получить полную векторную диаграмму поворотного движения достаточно соединить точку (В2) с центром вращения в точке (О) линией, которая естественно пройдёт и через точку (А1). Это и есть новый радиус вращения.
Теперь, когда мы определили общее приращение поворотного движения в виде общего годографа (ΔVпов=ΔVr=ΔVe), которая одновременно является девиацией поворотного движения, можно вернуться к традиционному для классической векторной геометрии расположению векторов, вернув вектор общего годографа (ΔVпов=ΔVr=ΔVe), она же девиация поворотного движения, и вектор (Vr1) в точку (В2), обозначающую наше тело. При этом вектор (Vr1) превратится в вектор (Vr2), а вектор текущей окружной линейной скорости будет равен простой алгебраической сумме векторов (Vе1) и (ΔVпов=ΔVr=ΔVe), что и показано на рисунке.
Таким образом, девиация поворотного движения определяется вдоль переносной окружности и равна общему приращению радиальной скорости по направлению и окружной скорости переносного движения по величине. Это и есть общий годограф поворотной скорости, который и определяет общее для этих двух скоростей ускорение поворотного движения.
Но поскольку абсолютная траектория поворотного движения в любом сколь угодно малом интервале времени пересекает бесконечное множество переносных окружностей, то общая девиация поворотного движения в рассматриваемом интервале времени определяется суммой всех девиаций, определяемых вдоль каждой переносной окружности. Очевидно, что для постоянного поворотного движения величина каждой текущей девиации прямо пропорциональна радиусу. Следовательно, общая сумма всех девиаций поворотного движения будет определяться дугой переносной окружности со средним радиусом за вычетом её части, пройденной с начальной линейной скоростью в исходной точке поворотного движения.
Некоторое графическое расхождение годографа (ΔVr) с годографом (ΔVe) на рисунке (4.1.1) объясняется только несоответствием масштаба общей кинематики поворотного движения, и реального масштаба, в котором осуществляется физический механизм поворотного движения. В реальном физическом масштабе формирования одного цикла ускорения Кориолиса стрелки вектора (Vr1) и вектора (Vе1) не движутся ни по траектории переносного вращения, ни по траектории поворота стрелки вектора (Vr1).
На уровне физического механизма нет собственно и самих стрелок (Vr1 и Vе1) в том обобщённом виде, в котором они изображены на рисунке (4.1.1). Зато на уровне физического механизма есть общее приращение движения по очень сложной траектории, которую невозможно изобразить графически во всех деталях в масштабе общей кинематики поворотного движения. Академически же мы можем это достаточно достоверно отразить только через общий годограф (девиацию) в очень малом интервале времени.
На нашем рисунке (4.1.1) для наглядности показан просто огромный интервал времени. Поэтому графическое расхождение годографов столь хорошо заметно. Однако в реальном масштабе времени изобразить обобщённую кинематику любого сложного движения практически невозможно. Поэтому мы преследовали цель показать только принципиальное совпадение приращения переносной скорости по абсолютной величине и относительной скорости по направлению, что, на наш взгляд, с достаточной достоверностью отображено на рисунке (4.1.1).
Для тех, у кого остались сомнения в правомерности, приведённой на (Рис. 4.1.1) векторной диаграммы общего для двух составляющих поворотной скорости ускорения, мы привели на этом же рисунке годограф абсолютной скорости (∆Vабс), который построен по всем правилам классической векторной геометрии с началом векторов в точке (В2) центра масс тела. Если бы в поворотном движении было бы два приращения двух составляющих так называемой поворотной скорости, то вектор (∆Vабс) более чем вдвое превышал бы наш вектор (ΔVпов = ΔVr = ΔVe). Однако, как вы можете убедиться сами он не дотягивает даже до полуторного превышения вектора (ΔVпов = ΔVr = ΔVe).
Конечно же, можно выбрать другие значения исходных векторов, при которых вектор (ΔVпов = ΔVr = ΔVe) будет значительно меньше по отношению к вектору (∆Vабс). Однако в составе годографа абсолютной скорости даже зрительно всегда несложно увидеть приращение, обусловленное именно центростремительным ускорением переносного вращения. При этом оставшаяся часть, приходящаяся на вектор (ΔVпов = ΔVr = ΔVe) вряд ли станет вдвое большей.
Но этот несложный графический эксперимент, если вы до сих пор сомневаетесь в нашей диаграмме, вы проделаете уже сами. У нас никаких сомнений в своей правоте нет. Во всяком случае, ниже мы ещё не раз подтвердим этот наш вывод с разных сторон. А вот в классической физике никаких сколько-нибудь убедительных доказательств наличия двух самостоятельных приращений двух составляющих поворотной скорости нет.

