Занимательная теория вероятности - Александр Исаакович Китайгородский
Шрифт:
Интервал:
Закладка:
Польстив читателю, перехожу к факту, который был использован Перреном для измерения средней энергии молекул и числа Авогадро.
Если бы не было теплового движения, то весь воздух лег бы на поверхность земли, а частички эмульсии в каком-либо сосуде осели бы на дно. При наличии же теплового движения возникает борьба двух сил: сила тяжести прижимает частицы к земле, а тепловое движение бросает их во все стороны, в том числе и вверх. Несмотря на полную беспорядочность движения, шансов у любой молекулы быть наверху все же меньше, чем быть внизу. Действительно, ударов от боковых, верхних и нижних соседок она получает одинаковое число, а сила тяжести действует только вниз. Поэтому частиц внизу должно быть больше, чем вверху.
Несложными и очень красивыми математическими выкладками можно доказать, что плотность частиц, будь то молекулы воздуха или частицы эмульсии, будет плавно убывать с высотой. При этом проявятся следующие довольно очевидные вещи: чем тяжелее частицы, тем больше их будет прижато к земле. Так в случае молекул воздуха падение плотности прослеживается до десятков километров; что же касается частиц эмульсии, то для них кривая плотности спадает так быстро, что на высоте всего лишь нескольких миллиметров, а то и нескольких микронов, шансы встретить заблудившиеся частицы практически равны нулю. Другое следствие — чем выше температура, тем медленнее спадает плотность — играло для Перрена меньшую роль.
Итак, первая идея опытов Перрена заключалась в следующем: изготовить эмульсию и, рассматривая ее при большом увеличении, провести подсчет зернышек, расположенных на разных высотах от дна сосуда. Если все это будет проделано, то станет возможной проверка гипотез, ибо теория имела достаточно простую формулу, которая позволяла вычислить среднюю энергию молекулы из результатов таких измерений, а именно из отношения концентраций зерен на двух высотах.
Говорить об этом легко и очень трудно сделать. С непреходящим удовольствием продолжал я читать статью Перрена. Описание того, как приготовлялись и эмульсии для исследования, воспринимается как художественное произведение с захватывающим сюжетом. Какой огромный объем работы надо было проделать Перрену исключительно своими руками! Для образования взвешенных частичек было перепробовано множество веществ. Особенно подходящим оказался гуммигут, широко используемый художниками для акварели. Но и после отбора нужных веществ было не легче. Надо отделить однородную чистую фракцию от других. На центробежной машине выделить зернышки одной массы (а надо помнить, как капризны были в те годы эти машины). Или какого труда стоили аккуратнейшие измерения веса зернышек, проделываемые с помощью закона Архимеда; ведь нужно было подбирать такие жидкости, в которых зернышки не тонули бы и не всплывали, то есть чтобы плотность жидкости равнялась плотности зернышек.
Не менее интересны страницы, посвященные измерению радиусов зернышек. Их значения нужно знать для вычисления энергии молекул, и Перрен для надежности проделывает эти измерения тремя способами. Совпадение результатов измерений у него было совершенно изумительным: например, одним способом он получил значение, равное 0,212 микрона, другим способом — 0,213 микрона и третьим — 0,211 микрона. Перрен ничего не пишет о времени, которое он тратил на эти работы, но ясно, что только подготовительный этап занял много месяцев.
Как поступил бы исследователь наших дней, вознамерившийся провести опыты по определению числа Авогадро описываемым методом? Наверное, он заказал бы одной фирме приготовление нужной эмульсии, другому учреждению — отбор нужных зернышек, третьему — конструкцию микроскопа. Затем приспособил бы электронно-вычислительную машину для подсчета зернышек, а научную статью написал бы в содружестве с пятью-шестью соавторами.
Перрен собрал свою установку сам и приступил (без чьей-либо помощи) к подсчету зернышек. Делать это ему было также не легко.
Приготовив эмульсию, надо было ждать несколько часов, а то и дней, чтобы в эмульсии установилось равновесие и, кроме того, погибли все микробы. (В эмульсию довольно часто попадают протозории — очень активные существа, которые, двигаясь, взбалтывают зернышки. Приходится терпеливо ждать, когда они из-за недостатка пищи погибнут и выпадут на дно.) Только тогда можно начать измерения.
Просчитано было им очень много самых разных зернышек в самых разных жидкостях и по разной методике. Так, например, зернышки гуммигута радиуса 0,212 микрона помещались в ванночку высотой 100 микрон. Измерения делались в четырех горизонтальных слоях, располагавшихся в ванночке на высотах 5 микрон, 35 микрон, 65 микрон и 95 микрон от дна.
Через отверстия, просверленные в стенке ванночки иглой, было сосчитано до 13 тысяч зернышек. В относительных числах (если принято за 100 число зерен на нижнем уровне) результаты выглядели так: в нижнем слое 100, в следующем — 47, еще в следующем — 22,6 и, наконец, в верхнем — 12. Если из этих чисел определить среднюю энергию молекулы, а затем обратным расчетом вычислить числа зерен на высотах, которые указаны, то получатся числа: 100, 48, 23 и 11,1.
Вряд ли кому-либо сегодня (даже используя современную технику) удастся получить лучшее совпадение теории и опыта. Такое совпадение — а оно было получено в большом числе серий измерений — настолько убедительно, что сомнения в справедливости теории после этого представляются по меньшей мере смешными.
Из этих же данных удалось в превосходном согласии с измерениями другими методами определить и число Авогадро.
Как мы уже говорили выше, в 1906 году вышла в свет работа Эйнштейна, следуя которой можно было провести проверку молекулярно-кинетических воззрений и вычисления числа Авогадро совсем другим путем.
В той же статье Перрен проводит непосредственную проверку формул Эйнштейна. Эта его работа была особенно высоко оценена при присуждении ему Нобелевской премии. Кроме того, им проведено наблюдение за отдельным зернышком. На клетчатой бумаге фиксировалось положение этого зернышка через равные промежутки времени, сначала через каждые 30 секунд, потом через каждые 60, затем еще через каждые 120 секунд. Точки, фиксировавшие мгновенные положения броуновской частицы, соединялись прямыми линиями. Характер зигзага был совершенно случайным. Но — так предсказывает теория Эйнштейна — для каждого из опытов, проведенных в одинаковых условиях, будет неизменной средняя длина отрезка, соединяющего два последовательных мгновенных положения. Эта средняя длина прочно связана с интересующими нас параметрами молекулярно-кинетической теории. Когда, используя формулу Эйнштейна, вычислили число Авогадро, то оно оказалось тем же, то есть 6 · 1023.
Предпоследний параграф статьи Перрена назван утверждающе: «Действительность молекул». Первая фраза его звучит так: «Я считаю невозможным, чтобы на ум, освобожденный от предвзятости, крайнее разнообразие явлений, приводящих к одному результату, не оставило сильного впечатления, и я думаю, что отныне трудно было бы разумными доводами отстаивать гипотезы, враждебные признанию молекул».
Вот так работы Перрена, которые