История математики. От счетных палочек до бессчетных вселенных - Ричард Манкевич
Шрифт:
Интервал:
Закладка:
Успех сопутствовал теории и представлениям Максвелла не с первых дней. Дж. Дж. Томпсон обвинял Максвелла в «мистике» за его теории полей. Эти обвинения довольно сильно напоминали реакцию, которую получил Ньютон в ответ на его теорию всемирного тяготения. В этот период в описании природы пространства царил полный хаос, и многие физики приспособили уравнения Максвелла для того, чтобы подтвердить свои собственные теории. В 1861 году Максвелл вычислил, что скорость электромагнитных волн очень близка к скорости света, что вдохновило его сделать свет частью электромагнитного спектра. В 1888 году Генрих Герц экспериментально доказал теорию Максвелла путем демонстрации существования электромагнитных волн. В то же самое время эксперименты Альберта Майкельсона и Эдварда Морли показали, что если эфир и существовал, то на него не влияло никакое движение как планет, так и пучка света. Старые аргументы о действии на расстоянии исчезли перед лицом экспериментальных доказательств. Но в основном переосмысление общего понятия пространства и времени произошло в 1905 году в результате работы Альберта Эйнштейна.
Впервые уравнения Максвелла с успехом были использованы в телеграфии и радиокоммуникациях. Хевисайд преобразовал его уравнения для телеграфии, где принял во внимание самоиндуктивность в линиях передач, которая была пропущена другими исследователями. Это привело к внедрению индуктивных катушек, чтобы повышать уровень сигнала, идущего по кабелям, в особенности по трансатлантическому кабелю. В 1902 году Гульельмо Маркони сумел успешно передать радиосигналы через Атлантику. Это подарило математическим физикам проблему точного моделирования того, как именно электромагнитные волны движутся в атмосфере Земли, особенно когда приемник находится вне поля зрения передатчика. С тех пор телекоммуникационная промышленность больше никогда не оглядывалась назад.
19. Заманчивая бесконечность
Математики и философы всегда боролись с понятием бесконечности. Греки боялись бесконечности и ее противоположности — бесконечно малых величин. Их страх время от времени всплывал на поверхность, особенно это заметно в определениях дифференциального и интегрального исчислений. Наконец в девятнадцатом веке проблема встала в полный рост. Результаты работы многих умов преобразовались во множество различных направлений математики, но сражение с бесконечностью и получившаяся в результате теория множеств была работой одного человека — Георга Кантора. Стимулом к этому стали все увеличивающееся использование бесконечных рядов и сомнения в их обоснованности.
Коши отобразил фундаментальные понятия дифференциального и интегрального исчислений в терминах арифметики, а не геометрии (это называлось арифметизацией исчисления). В отличие от древнегреческой традиции, в которой геометрии предоставлялось почетное место самого точного научного метода, девятнадцатый век поставил своей целью преобразовать математический анализ в арифметические образы. Это в значительной степени достигалось путем все увеличивающегося использования функций многочисленных переменных и функций комплексных переменных, визуальное представление которых часто было невозможно.
В 1822 году Жозеф Фурье (1768–1830) издал свой классический труд «Аналитическая теория тепла». Анализируя тепловой поток, Фурье решил получающееся дифференциальное уравнение способом, который стал известным как ряд Фурье. Согласно Фурье, любая функция может быть представлена бесконечным рядом синусов и косинусов, причем не только непрерывные функции, но даже прерывные или имеющие разрывы. Однако некоторые ученые начали сомневаться, что этот бесконечный ряд всегда сходится к необходимой функции, а немецкий математик Иоганн Петер Лежён-Дирихле (1805–1859) доказал, что это происходит только при наличии определенных ограничений. Дирихле обобщил понятие функции: он заявил, что любое правило, связывающее х и у, и есть функция, — и теперь не было необходимости иметь аналитическое выражение этого соотношения или уравнение. В качестве примера Дирихле построил «дикую функцию», определяя ее следующим образом: у = а, если х рациональное число, и у = b, если х — иррациональное число. Эта функция, которую сейчас математики описали бы как «патологическую», была прерывной в каждой точке и потому не могла быть нигде продифференцирована, но обсуждения сосредоточились на вопросе, можно ли ее интегрировать. Решение этой задачи потребовало определить, что именно следует считать иррациональным числом.
Галилей в своем анализе ускорения говорил, что, взяв бесконечный ряд натуральных чисел — 1, 2, 3… и возведя их в квадрат, вы получаете ряд 1,4, 9… Теперь, каждому числу из второго ряда может быть поставлено в соответствие число из первого ряда, таким образом, два ряда будут иметь одно и то же число членов. Но во втором ряду часть чисел отсутствует, так что в нем должно быть меньше элементов, чем в первом. Или две бесконечности были одинаковыми, или могут существовать различные виды бесконечности.
Бернхард Больцано (1781–1848), священник, живший в Праге, разработал интересные идеи, которые, к сожалению, долгое время оставались не замеченными учеными. Он выполнял арифметизацию дифференциального и интегрального исчислений методами, очень похожими на те, которые применял Коши, который во время своего изгнания бывал в Праге и встречался с Больцано. В своей работе «Paradoxien des Unendlichen», изданной посмертно в 1850 году, Больцано показал, что парадоксы вроде того, что обнаружил Галилей, обычны не только среди натуральных, но и среди действительных чисел. Например, в одном линейном сегменте то же число действительных чисел, что и в линии вдвое большей длины, что кажется алогичным и трудным для понимания. Этот богемский философ, похоже, очень близко подошел к пониманию того, что бесконечность действительных чисел относится к совершенно иному типу, чем бесконечность натуральных чисел. Он также внес свой вклад во все возрастающий список патологических функций, которые нарушали привычные правила исчисления.
Эта двойная проблема со свойствами функций и чисел была не случайной. Если какая-нибудь функция могла быть выражена как бесконечный ряд, скажем ряд Фурье, то было важно проверить, что этот ряд сходится к функции при каждом значении х — так называемая поточечная сходимость. Поскольку проверять это для каждого ряда довольно утомительно, предлагались различные критерии сходимости, каждый из которых требовал очень четкого понимания идеи бесконечной последовательности чисел, сходящейся к определенному числу. Коши, с его эллинистическим отвращением к бесконечностям, соскользнул в закольцованное доказательство, в одном месте определяя иррациональное число как предел последовательности рациональных чисел, а в другом выводя рациональные числа из иррациональных. Карл Вейерштрасс попытался освободить зависимость иррациональных чисел от пределов и постарался определить их не как предел последовательности, но как саму последовательность.
Тем временем Бернхард Риман переформулировал понятие интеграла в то, что сегодня преподается в школе. Функция Дирихле, упомянутая выше, все еще не имела интеграла в определении Римана. Приняв участие в собирании диких функций, Риман нашел еще одну, свою собственную, прерывистую в бесконечном числе точек, однако для этой функции интеграл не только существует, но и определяет непрерывную функцию, которая, в свою очередь, однако, не в состоянии иметь производную для того же самого бесконечного числа точек. Фундаментальная теорема дифференциального и интегрального исчислений была еще раз подвергнута сомнению.
Становилось ясно, что необходимо более четкое понимание того, что же на самом деле представляет собой иррациональное число, и, следовательно, было необходимо более ясное определение действительного числа. К 1850-м годам уже знали, что действительные числа можно разделить на два типа двумя различными способами: на рациональные и иррациональные числа, а также на алгебраические и трансцендентные. Рациональные числа — это любые числа вида m/n, то есть любая положительная или отрицательная дробь, включая целые числа и ноль. Иррациональные числа — это числа, которые не являются рациональными, вроде √2 и π. Алгебраические числа — это те, которые служат решениями конечных полиномиальных уравнений с целочисленными коэффициентами, то есть все числа, включая числа типа √2, но не π. Трансцендентными были числа, которые не были алгебраическими. Мы видим, что иррациональные и трансцендентные числа просто определяются тем, чем они не являются, и было непонятно, есть ли у них хоть какие-то специфические собственные свойства. В 1872 году была опубликована ключевая работа по этой теме — труд Рихарда Дедекинда (1831–1916) и Георга Кантора (1845–1918). В том же году началась их долгая дружба. Оба занимали относительно небольшие должности — Дедекинд в Политехническом института своего родного города Брансвик, Кантор — в Университете Галле, — но их работа оказала огромное влияние на весь математический мир.