Мир многих миров. Физики в поисках иных вселенных. - Александр Виленкин
Шрифт:
Интервал:
Закладка:
Ландшафт
Как я только что сказал, в теории струн нет подстроечных параметров. Это не преувеличение: их действительно нет, ни одного. Теория жестко фиксирует даже число измерений пространства. Проблема в том, что ответ в результате получается неверный: она требует, чтобы пространство имело 9 измерений вместо 3.
Это звучит довольно странно: почему мы вообще должны рассматривать теорию, которая находится в столь вопиющем противоречии с реальностью? Противоречие это можно, однако, обойти, если 6 лишних измерений свернуты или, как говорят физики, компактифицированы. Соломинка для коктейля — простейший пример компактификации: у нее есть одно большое продольное измерение и другое, свернутое в маленькую окружность. Если смотреть издали, соломинка выглядит одномерной линией, но вблизи видно, что в действительности ее поверхность — это двумерный цилиндр (рис. 15.3). Совершенно аналогично компактные дополнительные измерения могут быть невидимы, если они достаточно малы. В теории струн предполагается, что они не намного превышают планковскую длину.[132]
Рис. 15.3. Соломинка для коктейля имеет двумерную поверхность. Большое измерение идет вдоль нее, а маленькое свернуто в окружность.
Главная проблема с дополнительными измерениями состоит в том, что неясно, каким именно образом они компактифицировались. Если бы существовало одно дополнительное измерение, оно могло бы компактифицироваться только одним способом: свернуться в окружность. Двумерная поверхность компактифицируется в сферу, в бублик или в более сложную поверхность с большим числом "ручек" (рис. 15.4). Количество вариантов растет с увеличением числа измерений. Колебательные состояния струн зависят от размеров и формы дополнительных измерений, так что каждая новая компактификация соответствует новому вакууму с иными типами частиц, имеющими другие массы и другие взаимодействия.
Рис. 15.4. Различные способы компактификации двух дополнительных измерений. Большие, некомпактифицированные измерения не показаны.
Струнные теоретики надеялись, что в итоге теория даст единственную компактификацию, которая описывает наш мир, и мы получим наконец объяснение наблюдаемых значений всех параметров элементарных частиц.[133] На волне энтузиазма, которая последовала за математическими прорывами 1980-х годов, казалось, что эта цель вот-вот будет достигнута, и теорию струн называли будущей "Теорией Всего" — высокое звание для концепции, которой еще только предстоит сделать свои первые наблюдаемые предсказания! Но постепенно стала вырисовываться совершенно иная картина: теория, как выяснилось, допускает тысячи различных компактификаций.
Это было бы полбеды, но в середине 1990-х годов ситуация еще ухудшилась из-за некоторых неожиданных открытий. По мере того как улучшалось понимание математики теории струн, становилось ясно, что вдобавок к одномерным струнам теория должна включать двумерные мембраны, а также их многомерные аналоги. Все эти новые объекты собирательно называются бранами.[134] Маленькие вибрирующие браны должны выглядеть как частицы, но они слишком массивны, чтобы рождаться на ускорителях.[135]
С бранами связан один неприятный эффект: они радикально увеличивают число способов, которыми можно конструировать новые виды вакуума. Брана может как резиновая лента накручиваться на некоторые компактные измерения. Каждая стабильная конфигурация браны дает новый тип вакуума. Можно накрутить одну, две и более бран на каждую ручку компактного пространства, и при большом числе ручек количество вариантов становится просто чудовищным. В уравнениях теории нет подстроечных констант, но их решения, описывающие различные состояния вакуума, характеризуются сотнями параметров: размерами компактных измерений, расположением бран и т.п.
Если у нас есть один параметр, это очень похоже на скалярное поле в обычной физике элементарных частиц. Как говорилось в предыдущих главах, оно ведет себя подобно маленькому шарику на энергетическом ландшафте и катится к ближайшему минимуму плотности энергии. С двумя параметрами ландшафт становится двумерным, как показано на рисунке 15.5. У него есть максимумы (пики) и минимумы (долины), причем последние соответствуют состояниям вакуума. Высота каждого минимума задает соответствующую плотность энергии вакуума (космологическую постоянную).
Рис. 15.5. Двумерный энергетический ландшафт. Каждое измерение (не путать с измерениями обычного пространства) представляет один параметр, характеризующий вакуум теории струн.
Действительный энергетический ландшафт теории струн гораздо сложнее, поскольку он включает куда больше параметров. Этот ландшафт нельзя изобразить на листе бумаги: чтобы учесть все параметры, нужно пространство с несколькими сотнями измерений. Но ландшафт можно анализировать математическими методами. Грубые оценки показывают, что он содержит около 10500 (гугол в пятой степени!) различных вакуумов. Некоторые из них похожи на наш; другие имеют совершенно иные значения фундаментальных постоянных. Третьи отличаются еще радикальнее: они поддерживают совершенно иные частицы и взаимодействия или имеют свыше трех больших измерений.
Когда стали проступать контуры этого ландшафта, надежда вывести из теории струн один уникальный тип вакуума быстро развеялась. Однако струнные теоретики это отрицали и были не готовы признать поражение.
Пузырящаяся Вселенная
Первыми физиками, которые откололись от стаи, были Рафаэль Буссо (Raphael Bousso), ныне работающий в Калифорнийском университете в Беркли, и Джозеф Полчински из Института теоретической физики Кавли в Санта-Барбаре. Помните Полчински? Это тот самый струнный теоретик, который на дух не переносил антропный принцип и обещал бросить физику, если будет открыта космологическая постоянная.[136] К счастью, он изменил свое мнение как по части ухода из физики, так и в отношении антропного принципа.
Буссо и Полчински объединили картину струнного ландшафта с идеями инфляционной космологии и показали, что в ходе вечной инфляции будут порождаться области со всеми возможными вакуумами. Самый высокоэнергичный вакуум будет расширяться быстрее всех. На этом инфляционном фоне будут зарождаться пузырьки менее энергичных вакуумов (как в первоначальном инфляционном сценарии Гута, описанном в главах 5 и 6). Внутренние области пузырьков будут инфлировать в меньшем темпе, и в них будут появляться пузырьки с еще меньшей энергией (рис. 15.6).[137] В результате будет задействован весь ландшафт теории струн — образуется бесчисленное количество пузырьков со всеми возможными типами вакуума.[138]
Рис. 15.6. Пузырьки, заполненные низкоэнергетическим вакуумом, зарождаются на расширяющемся высокоэнергетическом фоне, и еще менее энергетические пузырьки появляются внутри них.
Мы живем в одном из пузырьков, но теория не говорит, в каком именно. Лишь очень малая доля из них пригодна для жизни, и мы должны оказаться именно в одном из таких редких пузырьков. То, что именно такая картина используется в антропных рассуждениях, стало большой неожиданностью для многих струнных теоретиков. Если теория струн действительно окончательная Теория Всего, то, по-видимому, антропное мировоззрение неизбежно.
Надо сказать, что еще далеко не весь ландшафт теории струн картирован. Чтобы получалась реалистичная космология, некоторые склоны должны быть очень пологими, допускающими медленно катящуюся инфляцию. Недавние работы показывают, что такие участки ландшафта действительно существуют. Но надо найти еще более пологие склоны, требуемые для скалярного поля Линде в модели переменной космологической "постоянной" (обсуждавшейся в главе 13). Пока таких не обнаружено. Но Буссо и Полчински полагают, что среди гуголов вакуумов струнного ландшафта найдутся подходящие варианты.
Вместо континуума плотностей энергий вакуума в модели Линде ландшафт теории струн предлагает дискретный набор значений. Это могло бы стать проблемой, поскольку лишь крошечная доля этих значений (примерно 1 из 10120) попадает в небольшой антропно приемлемый диапазон. Если бы у нас было меньше 10120 вакуумов, этот диапазон вполне мог бы оказаться пустым. Но при 10500 разных вакуумов в ландшафте набор значений оказывается столь плотным, что становится почти непрерывным, и можно ожидать, что гуголы вакуумов будут иметь космологическую постоянную в антропно приемлемом интервале. Тем самым, принцип заурядности по-прежнему остается в силе, и в успешном предсказании наблюдаемого значения космологической постоянной ничего не меняется.