φ – Число Бога. Золотое сечение – формула мироздания - Марио Ливио
Шрифт:
Интервал:
Закладка:
5. Пятая причина показывает, что Пачоли придерживался даже более платоновских взглядов на бытие, чем сам Платон. Пачоли утверждает, что подобно тому, как Господь дал жизнь мирозданию посредством квинтэссенции, нашедшей отражение в додекаэдре, так и золотое сечение дало жизнь додекаэдру, поскольку невозможно построить додекаэдр без золотого сечения. Пачоли добавляет, что невозможно сравнить остальные платоновы тела (символы воды, земли, огня и воздуха) друг с другом без опоры на золотое сечение.
В самой книге Пачоли постоянно разглагольствует о качествах золотого сечения. Он последовательно анализирует 13 так называемых «эффектов» «божественной пропорции» и каждому из этих «эффектов» приписывает эпитеты вроде «неотъемлемый», «неповторимый», «чудесный», «высочайший» и т. д. Например, тот «эффект», что золотые прямоугольники можно вписать в икосаэдр (рис. 22), он называет «непостижимым». Он останавливается на 13 «эффектах», сделав вывод, что «следует завершить этот перечень ради спасения души», поскольку именно 13 человек сидели за столом во время Тайной Вечери.
Не приходится сомневаться, что Пачоли очень интересовался живописью, и целью создания трактата «О божественной пропорции» отчасти было отточить математическую основу изящных искусств. На первой же странице книги Пачоли выражает желание посредством золотого сечения открыть художникам «тайну» гармонических форм. Чтобы обеспечить привлекательность своего труда, Пачоли заручился услугами лучшего иллюстратора, о каком только мог мечтать любой писатель: сам Леонардо да Винчи снабдил книгу 60 рисунками многогранников как в виде «скелетов» (рис. 51), так и в виде сплошных тел (рис. 52). За благодарностью дело не встало – Пачоли написал о Леонардо и его вкладе в книгу так: «Лучший живописец и мастер перспективы, лучший зодчий, музыкант, человек, наделенный всеми возможными достоинствами – Леонардо да Винчи, который придумал и исполнил цикл схематических изображений правильных геометрических тел». Сам же текст, признаться, не достигает заявленных высоких целей. Хотя начинается книга с сенсационных тирад, далее следует довольно-таки обычный набор математических формул, небрежно разбавленных философскими определениями.
Рис. 51
Рис. 52
Вторая книга трактата «О божественной пропорции» посвящена влиянию золотого сечения на архитектуру и его проявлениям в структуре человеческого организма. В основном трактат Пачоли основан на работе римского архитектора Марка Витрувия Поллиона (ок. 70–25 гг. до н. э.). Витрувий писал:
Центральная точка человеческого тела – это, естественно, пупок. Ведь если человек ляжет ничком на спину и раскинет руки и ноги, а на пупок ему поставить циркуль, то пальцы рук и ног у него коснутся описанной окружности. И подобно тому, как тело человека вписывается в круг, так можно из него получить и квадрат. Ведь если мы измерим расстояние от подошв до макушки, а затем применим эту меру к раскинутым рукам, то окажется, что ширина фигуры в точности равна высоте, как и в случае плоских поверхностей, имеющих форму идеального квадрата.
Ученые Возрождения считали этот отрывок очередным доказательством связи между природной и геометрической основой красоты, и это привело к созданию концепции витрувианского человека, которого так прекрасно изобразил Леонардо (рис. 53, в настоящее время рисунок хранится в Галерее Академии в Венеции). Подобным же образом книга Пачоли начинается с обсуждения пропорций человеческого тела, «поскольку в теле человека можно найти пропорции любых видов, по воле Всевышнего явленные через сокровенные тайны природы».
Рис. 53
В литературе можно часто встретить утверждения, что Пачоли будто бы считал, что золотое сечение определяет пропорции всех произведений искусства, однако на самом деле все совсем не так. Говоря о пропорции и внешнем устройстве, Пачоли в основном ссылается на витрувианскую систему, основанную на простых (рациональных) дробях. Писатель Роджер Герц-Фишлер проследил, откуда взялось распространенное заблуждение, что золотое сечение будто бы служило для Пачоли каноном пропорций: оно восходит к ложному утверждению, сделанному в издании «Истории математики» французских математиков Жана Этьена Монтюкла и Жерома де Лаланда 1799 года (Jean Etienne Montucla, Jérôme de Lalande. Histoire de Mathématiques).
Третий том трактата «О божественной пропорции» (короткая книга в трех частях о пяти правильных геометрических телах), в сущности, представляет собой дословный перевод на итальянский «Пяти правильных многогранников» Пьеро делла Франческа, написанных на латыни. То, что Пачоли ни разу не упоминает, что он всего лишь переводчик книги, вызвало у историка искусств Джорджо Вазари горячее осуждение. Вазари пишет о Пьеро делла Франческа:
Почитаясь редкостным мастером в преодолении трудностей правильных тел, а также арифметики и геометрии, он, пораженный в старости телесной слепотой, а затем и смертью, не успел выпустить в свет доблестные труды свои и многочисленные книги, им написанные, кои и поныне хранятся в Борго, у него на родине. Тот, кто должен был всеми силами стараться приумножить его славу и известность, ибо у него научился всему, что знал, пытался как злодей и нечестивец изничтожить имя Пьеро, своего наставника, и завладеть для себя почестями, которые должны были принадлежать одному Пьеро, выпустив под своим собственным именем, а именно брата Луки из Борго [Пачоли], все труды этого почтенного старца, который помимо вышеназванных наук был превосходным живописцем. (Пер. М. Глобачева)
Так можно ли считать Пачоли плагиатором? Весьма вероятно, хотя в «Summa» он все же воздает Пьеро должное, называя его «монархом в живописи наших времен» и человеком, который «знаком читателю по многочисленным трудам по искусству живописи и силе линии в перспективе».
Р. Эмметт Тейлор (1889–1956) в 1942 году выпустил книгу под названием «Нет царского пути. Лука Пачоли и его время» (R. Emmett Taylor. No Royal Road: Luca Pacioli and His Times). В этой книге Тейлор относится к Пачоли с большой симпатией и отстаивает ту точку зрения, что, если исходить из стиля, Пачоли, вероятно, не имеет никакого отношения к третьему тому трактата «О божественной пропорции», и это сочинение ему лишь приписывают.
Так это или не так, неизвестно, однако несомненно, что если бы не печатные труды Пачоли, идеи и математические конструкции Пьеро, которые не были опубликованы в печатном виде, вероятно, не стяжали бы той известности, которая им в результате досталась. Более того, до времен Пачоли золотое сечение было известно под устрашающими названиями вроде «крайнее и среднее отношение» или «пропорция, имеющая среднее и два экстремума», и само это понятие было известно одним лишь математикам.
Публикация «О божественной пропорции» в 1509 году вызвала новую вспышку интереса к теме золотого сечения. Теперь концепцию рассматривали, что называется, свежим взглядом: раз о ней издали книгу, значит, она достойна уважения. Само название золотого сечения оказалось наделено теолого-философским смыслом (божественная пропорция), а это также делало золотое сечение не просто математическим вопросом, а темой, в которую могли углубиться интеллектуалы самого разного толка, причем это разнообразие со временем лишь ширилось. Наконец, с появлением труда Пачоли золотое сечение стали изучать и художники, поскольку теперь о нем говорилось не только в откровенно математических трактатах – Пачоли рассказал о нем так, что этим понятием можно было пользоваться.
Рисунки Леонардо к трактату «О божественной пропорции», начертанные (по выражению Пачоли) «его неописуемой левой рукой», также оказали определенное воздействие на читательскую аудиторию. Вероятно, это были первые изображения многогранников в схематическом, скелетоподобном виде, что позволяло легко представить их себе со всех сторон. Возможно, Леонардо рисовал многогранники с деревянных моделей, поскольку в документах Совета Флоренции сохранились записи о том, что город приобрел набор деревянных моделей Пачоли, дабы выставить их на всеобщее обозрение. Леонардо рисовал не только схемы для книги Пачоли, наброски всевозможных многогранников мы видим повсюду в его заметках. В одном месте Леонардо дает приблизительный метод построения правильного пятиугольника. Слияние математики с изобразительным искусством достигает пика в «Trattato della pittura» («Трактате о живописи»), который составил Франческо Мельци, унаследовавший рукописи Леонардо, по его записям. Начинается трактат с предупреждения: «Тот, кто не математик, да не прочтет мои труды!» – едва ли такое заявление найдешь в современных учебниках по изобразительному искусству!