Болезнь Альцгеймера: диагностика, лечение, уход - Аркадий Эйзлер
Шрифт:
Интервал:
Закладка:
Впоследствии в своих работах Хорникевич концентрируется на улучшении своей терапии. Очень важную роль играет при этом индивидуальная нейрохимия отдельных пациентов, которой в недалеком будущем необходимо будет уделять большее внимание.
Медикамент L-Dopa был и остается стандартным в борьбе с болезнью Паркинсона, но новые пути в борьбе с этой болезнью открывает и генная технология.
Исследования идут дальше, а химический разговор мозга, масса которого составляет всего 1 300 г, все еще не раскрыт.
«Каждый раз, когда я вскрываю и раскладываю на части мозг, мне становится ясным, что в прямом смысле этого слова передо мной лежит в высшей степени мудрое произведение искусства, возможно, самая важная составляющая человеческой личности», — говорит Хорникевич.
Оба нейрофармаколога, Карлссон и Хорникевич, так далеко привели в движение учение и теорию о допамине, что довели ее до практического применения для лечения пациентов.
И все же обладателем Нобелевской премии 2000 года стал Арвид Карлссон, который не только изучил влияние недостатка допамина на возникновение и развитие болезни Паркинсона, но также и на поведение других переносчиков сигнальных веществ в нервной системе. Его работы внесли большой вклад в производство антидепрессивных препаратов. Карлссон выяснил также механизм действия медикаментов, применяемых, например, для лечения шизофрении.
К концу 60-х годов было еще неясно, как действуют, например, допамин, норадреналин и серотонин в качестве трансмиттеров в центральной нервной системе. Заслуга другого Нобелевского лауреата Поля Грингарда состоит в том, что он разгадал основополагающие молекулярные феномены, происходящие на местах контактов нервных клеток — синапсов. Прежде всего его интересовали так называемые медленные синапсовые передачи. Они играют важную роль в функциях центральной нервной системы и влияют, например, на настроение и внимание.
Как установил Грингард, медленные синапсовые передачи тесно связаны с реакциями, называемыми фосфорированием. При этом связь фосфатных групп с молекулой изменяет ее форму и функции. Ученый наблюдал, что допамин вызывает в клетке биохимический каскад, который влияет на многочисленные протеины, в том числе и молекулярные щели, называемые ионными каналами. Через эти каналы, сосредоточенные в клеточной мембране, в клетку могут проникать определенные ионы, например кальций, в результате чего в синапсах выделяется повышенное количество переносчиков информации — трансмиттеров.
Это ведет к изменению электрического потенциала и тем самым к изменению уровня активности нервной клетки — со всеми последствиями для функций мозга.
Фосфорирование протеинов играет важную роль в феноменах, которые разгадал третий Нобелевский лауреат 2002 года Эрик Кандел. Ему удалось перекинуть мост между элементарными молекулярными процессами и высшими функциями головного мозга, такими как обучение и память.
Основополагающие феномены биологии принято первоначально фиксировать на простых организмах. Эрик Кандел взял в качестве модели улитку «морского зайца» (Aplysia depilans). Ее организм состоит «всего» из 20 ООО нервных клеток. Реакция этого моллюска (рефлекторное втягивание жабр) на определенные раздражения очень наглядна, что дало возможность Канделу наблюдать и познавать процессы обучения, происходящие затем и в более сложных организмах. И замечание Бейройтера о том, что процесс прохождения сигнального амилоидопротеина АРР через синапсы связан с обучением, было, возможно, основано именно на этом заключении Кандела. В тончайших экспериментах ученому удалось изучить память на приобретенные моторные способности. Даже слабые раздражения вели к кратковременной памяти, содержание которой остается в мозге на период от минут до нескольких часов.
При повторении раздражения организм улитки реагирует сильнее — очевидно, он научился реагировать на опасность. Если моллюска подвергнуть такому раздражению многократно, накопленный опыт поведения переходит в долговременную память, удерживающую информацию уже на период до нескольких недель. Как установил Эрик Кандел, это связано не с изменением уже имеющихся протеинов, а с синтезом новых, которые проникают в ядро клетки, вызывают там процесс считывания информации с определенных генов и перевода ее в белок. В итоге синапсы изменяют свои свойства.
Раскрытие механизма приема и накапливания информации в нейроновых сетях на молекулярном уровне дало возможность ученому сделать далеко идущие прогнозы, которые, как он считает, могут привести к созданию основ для получения фармацевтического средства борьбы с болезнями старости и, в частности, БА. Потребность в средстве, благодаря которому можно поднять и увеличить потенциал памяти, неограниченна. В 2003 году в прессе промелькнул целый ряд сообщений о том, что под руководством Кандела разработан препарат, который помогает по меньшей мере у мышей задержать процесс потери памяти. И к этому следует отнести и замечание самого ученого о надежде получить такое же средство для человека: «Через 5 лет будет разработана «пилюля памяти». Газеты мгновенно запестрили сообщениями, в которых журналисты со свойственным им богатством воображения называли будущий медикамент «виагрой для мозга».
Интересно привести здесь отрывки из интервью Кандела, данному им корреспонденту журнала «Spiegel» в том же, 2003 году: «Медикамент должен назначаться только при четко диагностированной картине заболевания, но преобладает тенденция к превращению его в «общедоступный медикамент», который можно будет глотать как витамин в возрасте после 40 лет для профилактики забывчивости. Мы знаем, что опыт и воспоминания — вся информация, воспринятая мозгом — обрабатывается в гиппокампе. Оттуда она направляется в кору больших полушарий и сохраняется там непосредственно в той области, где поступившее раздражение было обработано первоначально. Восприятие и переработка происходят, таким образом, в одном и том же регионе. Наука знает о процессе памяти не так уж много, но, возможно, именно память станет одной из первых когнитивных функций головного мозга, которую мы сможем расшифровать и понять на молекулярном уровне.
Мы уже знаем, например, что существует молекула, которая блокирует перевод информации из кратковременной памяти в долговременную. Если блокировать действие этой молекулы, то поступившая в мозг новая информация может быть долговременно сохранена. Разумеется, искушение искусственно повлиять на этот своего рода «выключатель», решающий, что остается в памяти, очень велико».
Подтверждение того, что память в значительной мере связана с синапсами, без сомнения, продвинуло нейробиологические опыты. Однако не следует забывать, что «морской заяц» является простой моделью живого организма. В нейробиологии не так легко выявить концепции, действующие для разных биологических видов, как, например, в генетике.
У позвоночных животных, и, прежде всего, у человека, возможно, действуют другие механизмы процесса обучения. От широкого и всеобъемлющего понимания процесса возникновения памяти ученые в настоящее время очень далеки, хоть и упорно продвигаются по путям, ведущим к их разгадке.
Одним из них является директор Института молекулярной генетики, академик РАН Е.Д. Свердлов, который выдвинул предположение, подтверждающее высказывание А. Портмана. Согласно этому предположению, человеку удалось задержаться в «детстве», и, как следствие, его мозг и нервная система получили значительно больше синапсовых взаимодействий и контактов окончаний нервных клеток, чем, например, мозг обезьяны, у которой путь развития был значительно ускорен, посредством, как предполагает академик, наличия ретровирусов.
Эти вирусы вносят элементы, способные регулировать активность генетического аппарата. Они могут так изменить программу развития зародыша, что это развитие может остановиться на более ранней стадии. Новорожденные шимпанзе и человека очень похожи. И вот, согласно гипотезе, которую многие разделяют, когда-то у части популяции нашего с шимпанзе общего предка произошли изменения генома, которые изменили и программу его развития, и таким образом представители этой части популяции (предполагается, что именно от нее произошло человечество) задержались на более ранней стадии развития. Это могло дать мозгу возможность развиваться дальше. Увеличилось время зависимости потомков от родителей. В результате процесс передачи потомкам навыков, приобретенных родителями, интенсифицировался, возросла роль обучения.
Тем самым подтверждается не только значение эволюционной теории Дарвина, но и огромное влияние обучения на развитие структур мозга. Подчеркивается и влияние социального фактора на мутацию различных генов, ответственных за процесс обучения.