Рождение сложности: Эволюционная биология сегодня - Александр Марков
Шрифт:
Интервал:
Закладка:
Одними из самых важных являются так называемые азотфиксирующие симбиозы — кооперация растений с микроорганизмами, способными переводить азот из атмосферы или захороненной в почве органики в доступную для растений форму (аммоний, NH4+). Основная часть биосферного азота содержится в атмосфере в химически инертной молекулярной форме (N2). Восстановление (фиксация) этого азота требует огромного количества энергии. Как мы знаем из главы "Планета микробов", на это способны лишь некоторые бактерии и архей, у которых есть специальные ферменты — нитрогеназы. Дополнительная сложность состоит в том, что нитрогеназы работают только в анаэробных (бескислородных) условиях. Все высшие (эукариотические) организмы, в том числе растения по определению аэробны, и в этом, возможно, главная причина того, что у высших организмов способность к фиксации азота не встречается. Много азота содержится также в почве в составе органических веществ, но и этот азот для растений недоступен, поскольку у них нет пищеварительных ферментов, необходимых для расщепления этой органики.
Два компонента азотфиксирующего симбиоза — это наземное растение (здесь годится любой тип растений) и какие-нибудь бактерии, способные фиксировать азот. В роли последних могут выступать цианобактерии, актинобактерии и альфапротеобактерии. Наиболее изучен симбиоз бобовых с клубеньковыми бактериями — ризобиями. Ризобии относятся к группе альфапротеобактерий. Ризобии, живущие в специализированных органах (клубеньках), снабжают растение аммонием, взамен получая весь комплекс элементов питания, в первую очередь углеводы, образуемые в ходе фотосинтеза. Между растительным и бактериальным компонентами симбиотического комплекса сложилась эффективная и гибкая система взаимной координации и регуляции. Например, специальные ферменты растений, работающие только в клубеньках, "заботятся" о том, чтобы концентрация кислорода в центральной части клубенька, где живут ризобии, была как можно ниже (и она там действительно ниже, чем в атмосфере, на 5-6 порядков). Биохимическая и генетическая интеграция симбиотического комплекса доходит даже до того, что активность некоторых растительных генов регулируется бактериальными белками!
Важную экологическую роль играет также симбиоз растений с азотфиксирующими цианобактериями. В отличие от ризобий цианобактерии сами способны к фотосинтезу, что несколько упрощает задачу снабжения азотфиксирующих симбионтов необходимой энергией. Симбиотический комплекс водного папоротника Azolla и цианобактерии Anabaena имеет большое сельскохозяйственное значение: заселение рисовых плантаций этим папоротником резко повышает урожайность риса. Неслучайно в некоторых районах Юго-Восточной Азии азоллу обожествляют.
В народнохозяйственных целях было бы очень полезно "научить" сами растительные клетки фиксировать атмосферный азот, точнее, их органеллы — пластиды. Теоретически это возможно, ведь многие "дикие" цианобактерии умеют фиксировать азот (мы ведь не забыли, что пластиды — потомки цианобактерий). Наверное, можно генно-инженерными методами создать пластиды с генами нитрогеназ, которые могли бы работать в темноте (например в корнях). Конечно, будет очень сложно добиться достаточно низкой концентрации кислорода в растительных клетках, но перспектива выглядит весьма заманчивой, ведь недостаток доступного азота — главный лимитирующий фактор, ограничивающий рост растений. Сняв это ограничение, можно было бы добиться колоссального увеличения урожайности.
Клубеньки с азотфиксирующими бактериями встречаются не только у бобовых, но и у некоторых других растений. На рисунке — клубеньки на корнях ольхи.
Огромную роль в биосфере играют также симбиозы автотрофов с гетеротрофами — кооперация организмов, синтезирующих органику из углекислого газа, с потребителями готовой органики. В роли первых выступают фотосинтезирующие организмы (растения, одноклеточные эукариоты, цианобактерии) или бактерии-хемоавтотрофы, использующие для фиксации СО2 энергию окисления неорганических веществ (например, сероводорода или метана). В роли вторых выступают животные или грибы. Широко распространены симбиозы с участием грибов — микоризы и лишайники. В случае микоризы грибной компонент получает от растения-хозяина углеводы (глюкозу, фруктозу), а сам берет на себя функцию корневых волосков (которые на микоризных корнях часто не развиваются) и вдобавок снабжает хозяина азотом и фосфором, которые гриб добывает, разлагая почвенную органику. Лишайники иногда называют "микоризой наоборот", поскольку в этих симбиотических комплексах гриб выступает в роли хозяина, а фотоситезирующие организмы (одноклеточные водоросли или цианобактерии) — в роли симбионта. Однако система биохимической интеграции у лишайников и микориз во многом сходна. Наибольшего совершенства эта система достигает у трехкомпонентных лишайников, в состав которых входят помимо гриба-хозяина специализирующиеся на фотосинтезе зеленые водоросли и специализирующиеся на азотфиксации цианобактерии.
Выход растений на сушу — результат симбиоза. Первые наземные растения появились в конце силурийского периода (более 400 млн лет назад). Недавно палеонтологи обнаружили, что уже самые первые наземные растения жили в симбиозе с грибами: у них была самая настоящая микориза. У этих растений еще не было настоящих корней — вместо них имелись так называемые ризоиды, не способные самостоятельно всасывать что-либо из почвы и служившие только для закрепления в грунте, а также, как теперь выяснилось, для обеспечения симбиоза с почвенными грибами. По- видимому, без этого симбиоза растения вообще не смогли бы выйти на сушу. Симбиоз растений с азотфиксирующими бактериями возник позже, причем для этого растениям оказалось достаточно лишь немного изменить те генетические системы, которые сложились у них ранее для взаимодействия с микоризными грибами.
Симбиоз с автотрофами открывает большие возможности для многих водных животных, особенно малоподвижных (кишечнополостных, губок, асцидий, некоторых червей и моллюсков). Такие симбиотические комплексы представляют собой "сверхорганизмы", сочетающие признаки растений и животных (яркий пример — коралловые полипы). Автотрофы не только снабжают хозяина органикой, полученной в результате фото- или хемосинтеза, но и в ряде случаев помогают ему избавляться от конечных продуктов азотного обмена (например, мочевой кислоты или мочевины), которые служат для симбионтов ценным источником азота.
Чрезвычайно широко распространены также симбиозы животных с микробами, помогающими усваивать растительную пищу. Потребление органики, производимой растениями в ходе фотосинтеза, — главная "экологическая роль" животных в биосфере, однако, как это ни парадоксально, сами по себе животные практически не способны справляться с этой задачей. Подавляющее большинство растительноядных животных попросту лишены ферментов для расщепления растительных полимеров (главным из которых является целлюлоза). Поэтому практически все животные-фитофаги — это на самом деле симбиотические комплексы из животного-хозяина и разнообразных бактерий, грибов или простейших (причем в последнем случае симбиотические простейшие зачастую сами имеют бактериальных симбионтов). Скорее всего, растительноядность изначально была симбиотическим феноменом. Роль симбионтов не сводится к расщеплению растительных полимеров: они могут также утилизировать азотные шлаки хозяина и синтезировать многие вещества, необходимые хозяину, но отсутствующие в растительной пище. Микробное сообщество, обитающее в пищеварительном тракте термитов, обладает даже способностью к азотфиксации, что позволяет этим насекомым питаться такими несъедобными вещами, как химически чистая целлюлоза. Некоторые биохимические процессы в таких симбиотических системах оказываются весьма причудливым образом распределены между хозяином и симбионтом. Например, комплекс "тли — бактерия Buchnera" синтезирует важнейшее вещество кофермент А совместными усилиями: сначала бактерия синтезирует из пирувата пантотеновую кислоту (чего не может насекомое), а затем тля синтезирует из пантотеновой кислоты кофермент А (чего не может бактерия). Конечным продуктом пользуются они вместе.
Способность тлей приспосабливаться к колебаниям температуры зависит от симбиотических бактерий. Тли питаются исключительно соками растений. Жить на этой скудной диете им позволяет удачный симбиоз с бактериями Buchnera. Симбионты получают от хозяев кров и пропитание, а в обмен синтезируют для них аминокислоты, витамины и другие вещества, напрочь отсутствующие в той чуть сладенькой водичке, которая составляет единственную пищу тлей.