История математики. От счетных палочек до бессчетных вселенных - Ричард Манкевич
Шрифт:
Интервал:
Закладка:
Но, чтобы создавать точные карты, нужно было безошибочно определить широту и долготу ключевых точек поверхности. Найти широту всегда было довольно просто — она соответствовала высоте небесного полюса. Днем использовалось положение Солнца с применением таблиц склонения, по которым можно было определить угловое расстояние Солнца от экватора в любой день года. Однако определить долготу было намного труднее. Теоретически все было ясно: считая нулевой меридиан основой для измерения времени, сдвиг на каждые 15° долготы от меридиана соответствовал отклонению местного времени от меридианного на один час. Местное время можно было установить астрономически или при помощи солнечных часов, но при этом надо было знать точное время на меридиане. Сначала предлагалось использовать Луну как своего рода ночные часы, отмеряющие время, когда она пересекает небо. Но Луна движется по небу крайне неравномерно, а морские плавания были настолько долгими, что такой метод можно было применять лишь тогда, когда у навигатора имелись таблицы движения Луны, расписанные на много лет вперед. Именно с этой целью в 1675 году была основана Гринвичская королевская обсерватория. Лишь в 1767 году королевский астроном Невил Маскелайн (1732–1811) издал свой «Навигационный альманах», в который входили таблицы угловых расстояний до Луны, измеренные через каждые 3 часа в течение всего года. К тому времени был уже почти готов морской хронометр Джона Харрисона и вскоре стал самым распространенным методом вычисления долготы во время похода в открытом море. Точные часы, установленные на борту судна, показывают время на меридиане, значит, необходимо определить местное время по Солнцу и звездам. Разница между этими двумя показателями и даст долготу судна.
Создание проекции еще более усложнилось, когда стало ясно, что Земля не идеальная сфера, а сплющенный с полюсов сфероид — сфера, полюса которой немного уплощены. Рисунок Земли, сжатой у полюсов, который Ньютон опубликовал в своих «Началах», был в конечном счете подтвержден экспериментально. Если Земля сплющена на полюсах, то при перемещении от экватора к полюсу длина одного градуса широты должна увеличиться, точно так же, как благодаря гравитации должно увеличиться ускорение. Для того чтобы измерить оба явления, были организованы целые экспедиции. В 1735 году Парижская академия наук организовала экспедиции в Лапландию и Перу с целью измерить разницу в градусах долготы возле полюса и в районе экватора. Классический опыт Христиана Гюйгенса, в котором был использован простой маятник, показал, что период его колебаний зависит от величины гравитационного ускорения. Рассогласование было замечено еще в 1672 году, когда маятник, отбивающий время с точностью до секунды в Париже, пришлось укоротить, чтобы он показывал то же самое время в Кайенне. К сожалению, ошибки наблюдения обычно приводили к несопоставимым результатам. Некоторые даже считали, что Земля — вытянутый сфероид, то есть удлиненный, а не сглаженный на полюсах. В 1832 году американский математик Натаниэль Баудич (1773–1838) получил 52 измерения из самых разных точек земного шара — от Лапландии до мыса Доброй Надежды. К переводу труда французского математика, физика и астронома Пьера Симона Лапласа (1749–1827) «Небесная механика» он добавил свой анализ этих результатов и рассчитал степень сплющивания (эллиптичность) Земли, которая составила 1/297. Почти сто лет спустя это значение было принято практически во всем мире.
Отклонения от идеальной сферы потребовали поисков тригонометрических форм, выходящих за рамки плоскости и сферы, с помощью которых будет удобно обращаться со сфероидами. Сумма углов треугольника, расположенного на сфере, больше 180°, но превышение будет меняться в зависимости от места расположения треугольника на сфероиде. Французский математик Адриен Мари Лежандр (1752–1833) в 1799 году выполнил довольно изящную работу — связал стороны треугольника с разницей между суммой углов и 180°. Затем с помощью дифференциального и интегрального исчислений были определены новые проекции, формулы которых позволяли определить необходимые искажения. Немецкий физик и математик Иоганн Генрих Ламберт (1728–1777) опубликовал в 1772 году несколько различных проекций, одна из которых, конформная коническая проекция, используется до сих пор. В этом случае Земля проецируется на конус, который касается сферы в «стандартной параллели». Затем конус можно «развернуть», создавая плоскую карту.
Приборы, необходимые для навигации и геодезии, совершенствовались быстро. Астролябия, унаследованная от греков и усовершенствованная арабами, была своего рода аналоговой счетной машиной. Вращая диск, на котором были выгравированы проекция неба и орбиты различных небесных тел, можно было вычислить время восхода и захода. Каждая проекция подходила для фиксированной широты, так что в комплекте с астролябией шел набор дисков, каждый из них был предназначен для своей широты. Астролябия также могла использоваться для вычисления угла возвышения и азимутов небесных тел, вычисления времени и измерения астрономических расстояний. Использование угла возвышения и азимута в качестве стандартных измерений ввели арабы. Угол возвышения — это угол по отношению к горизонту, а азимут — угловое расстояние от меридиана. Солнечные часы были обычным инструментом определения времени, использующим изменения угла возвышения Солнца в течение дня или изменения его азимута. Большинство дисков надо было ориентировать с помощью компаса, но это было очень сложно, если принимать во внимание изменение скорости движения Солнца по небу. В XVII веке были созданы универсальные солнечные часы, которые могли использоваться на любой широте, хотя их все еще необходимо было настраивать. Затем морскую астролябию — довольно простой прибор — сменил квадрант. Постепенно квадранты, секстанты и тому подобные инструменты, используемые мореплавателями, астрономами и землемерами, становились все более и более точными, поскольку стали объединяться с оптическими инструментами и более точными шкалами.
Постоянно усиливавшаяся потребность в точности измерений на земле, в море и в небесах влекла за собой увеличение объема необходимых вычислений. Добавление новых формул означало удлинение вычислений. В результате начиная с XVII века к облегчению расчетов привело применение логарифмов. У штурманов имелись таблицы тригонометрических функций и логарифмов, позволявшие облегчить вычисления, хотя в таких таблицах было очень много ошибок, закравшихся в процессе печати. Изобретение логарифмической линейки если и не смогло увеличить точность вычислений, то по крайней мере сберегало время, и потому в XVIII веке она получила широкое распространение. К тому времени взгляд на мир сильно отличался от представлений Птолемея — теперь Земля была простой планетой, сплюснутым с полюсов сфероидом, вращавшимся вокруг Солнца по своей орбите. Во второй половине XX века мы наконец оторвались от поверхности Земли и увидели свою планету с высоты, и тогда искусственные спутники позволили исправить географические карты.
15. Уравнение пятой степени
В XVI веке математики почти случайно натолкнулись на комплексные числа (см. Главу 11). К XVIII веку комплексные числа считались расширением области действительных чисел, но работа с ними все еще приводила к ошибке четности, как в труде Леонарда Эйлера «Универсальная арифметика» (1767–1770). Он писал, что √ - 2х√ - 3 = √6, а не -√6, смущая более поздних авторов, писавших на ту же тему. Даже Карл Фридрих Гаусс (1777–1855) в своем великом труде по теории чисел «Арифметические исследования» (1801) избегал использования так называемых «мнимых чисел». Как мне кажется, самая важная часть этой работы — первое доказательство фундаментальной теоремы алгебры. Гаусс понял, насколько важной была эта теорема, создав за последующие годы несколько дополнительных доказательств. В 1849 году он переделал первый вариант, на сей раз использовав комплексные числа. Пользуясь современными терминами, можно сказать, что для любого конечного многочленного уравнения с действительными или комплексными коэффициентами все его корни будут действительными или комплексными числами. Таким образом, мы получаем отрицательный ответ на давний вопрос о том, требует ли решение полиномиальных уравнений высокого порядка создания чисел более высокого порядка, чем комплексные.
Одной из самых тернистых проблем алгебры того времени был вопрос, разрешим ли алгебраическими методами, то есть с помощью конечного числа алгебраических шагов, полиномиал пятого порядка — квинтик. Сейчас в школе учат формулу решения квадратных уравнений, а с XVI века известны аналогичные методы для решения уравнений третьей и четвертой степени (Глава 11). Но для квинтиков не было найдено ни одного метода. Может показаться, что фундаментальная теорема алгебры содержит перспективу положительного ответа, но на самом деле она просто гарантирует, что решения существуют, в ней ничего не говорится о существовании формул, дающих точные решения (к тому времени уже существовали приблизительные числовые и графические методы). И вот появились два математических гения с трагической судьбой.